

Getting
started with Spring Framework

Second
Edition

Ashish Sarin, J
Sharma

Table of contents

Preface

How to use this book

Conventions used in
this book

Feedback and
questions

About the authors

Chapter 1 –
Introduction to Spring Framework

1-1 Introduction

1-2 Spring Framework
modules

1-3 Spring IoC
container

1-4 Benefits of
using Spring Framework

Consistent approach
to managing local and global transactions

Declarative
transaction management

Security

JMX (Java Management Extensions)

JMS (Java Message
Service)

Caching

1-5 A simple Spring
application

Identifying
application objects and their dependencies

Creating POJO
classes corresponding to identified application objects

Creating the
configuration metadata

Creating an instance
of Spring container

Access beans from
the Spring container

1-6 Frameworks built
on top of Spring

1-7 Summary

Chapter 2 –
Spring Framework basics

2-1 Introduction

2-2 Programming to
interfaces design principle

Scenario: Dependent
class contains reference to the concrete class of dependency

Scenario: Dependent
class contains reference to the interface implemented by the dependency

Spring’s support for
‘programming to interfaces’ design approach

2-3 Different
approaches to instantiating Spring beans

Instantiating beans
via static factory methods

Instantiating beans
via instance factory methods

2-4 Dependency
injection techniques

Setter-based DI

Constructor-based DI

2-5 Bean scopes

Singleton

Prototype

Choosing the right
scope for your beans

2-6 Summary

Chapter 3 -
Configuring beans

3-1 Introduction

3-2 Bean definition
inheritance

MyBank – Bean
definition inheritance example

What gets inherited
?

3-3 Constructor
argument matching

Passing simple
values and bean references using <constructor-arg> element

Constructor argument
matching based on type

Constructor argument
matching based on name

3-4 Configuring
different types of bean properties and constructor arguments

Built-in property
editors in Spring

Specifying values
for different collection types

Specifying values
for arrays

Default collection
implementation for <list>, <set> and <map> elements

3-5 Built-in
property editors

CustomCollectionEditor

CustomMapEditor

CustomDateEditor

3-6 Registering
property editors with the Spring container

Creating a PropertyEditorRegistrar implementation

Configuring the CustomEditorConfigurer class

3-7 Concise bean
definitions with p and c namespaces

p-namespace

c-namespace

3-8 Spring’s util
schema

<list>

<map>

<set>

<properties>

<constant>

<property-path>

3-9 FactoryBean interface

MyBank application –
Storing events in the database

MyBank – FactoryBean
example

Accessing the
FactoryBean instance

3-10 Summary

Chapter 4 -
Dependency injection

4-1 Introduction

4-2 Inner beans

4-3 Explicitly
controlling the bean initialization order with depends-on
attribute

MyBank – implied
dependencies between beans

Implicit dependency
problem

4-4 Singleton- and
prototype-scoped bean’s dependencies

Singleton-scoped
bean’s dependencies

Prototype-scoped
bean’s dependencies

4-5 Obtaining new
instances of prototype beans inside singleton beans

ApplicationContextAware
interface

<lookup-method> element

<replaced-method> element

4-6 Autowiring
dependencies

byType

constructor

byName

default / no

Making beans
unavailable for autowiring

Autowiring
limitations

4-7 Summary

Chapter 5 - Customizing
beans and bean definitions

5-1 Introduction

5-2 Customizing
bean’s initialization and destruction logic

Making Spring invoke
cleanup method specified by the destory-method attribute

Cleanup methods and prototype-scoped
beans

Specifying default
bean initialization and destruction methods for all beans

InitializingBean and
DisposableBean lifecycle interfaces

JSR 250’s @PostConstruct and @PreDestroy annotations

5-3 Interacting with
newly created bean instances using BeanPostProcessor

BeanPostProcessor example – Validating
bean instances

BeanPostProcessor example – Resolving
bean dependencies

BeanPostProcessor behavior for
FactoryBeans

RequiredAnnotationBeanPostProcessor

DestructionAwareBeanPostProcessor

5-4 Modifying bean
definitions using BeanFactoryPostProcessor

BeanFactoryPostProcessor example

PropertySourcesPlaceholderConfigurer

PropertyOverrideConfigurer

5-5 Summary

Chapter 6- Annotation-driven
development with Spring

6-1 Introduction

6-2 Identifying
Spring components with @Component

6-3 @Autowired - autowiring dependencies by type

6-4 @Qualifier – autowiring dependencies by name

6-5 JSR 330’s @Inject
and @Named annotations

6-6 JSR 250’s @Resource annotation

6-7 @Scope, @Lazy, @DependsOn and @Primary annotations

6-8 Simplifying
component configuration using @Value annotation

6-9 Validating
objects using Spring’s Validator interface

6-10 Specifying
constraints using JSR 303 annotations

JSR 303 support in
Spring

6-11
Programmatically configuring Spring beans using @Configuration and @Bean
annotations

6-12 Summary

Chapter 7 - Database
interaction using Spring

7-1 Introduction

7-2 MyBank
application’s requirements

7-3 Developing the
MyBank application using Spring’s JDBC module

Configuring a data
source

Creating DAOs that
use Spring’s JDBC module classes

7-4 Developing the
MyBank application using Hibernate

Configuring SessionFactory instance

Creating DAOs that
use Hibernate API for database interaction

7-5 Transaction
management using Spring

MyBank’s transaction
management requirements

Programmatic
transaction management

Declarative
transaction management

Spring’s support for
JTA

7-6 Summary

Chapter 8 - Messaging,
emailing, asynchronous method execution, and caching using Spring

8-1 Introduction

8-2 MyBank
application’s requirements

8-3 Sending JMS
messages

Configuring ActiveMQ
broker to run in embedded mode

Configuring a JMS ConnectionFactory

Sending JMS messages
using JmsTemplate

Sending JMS messages
within a transaction

Dynamic JMS
destinations and JmsTemplate configuration

JmsTemplate and message conversion

8-4 Receiving JMS
messages

Synchronously
receiving JMS messages using JmsTemplate

Asynchronously
receiving JMS messages using message listener containers

8-5 Sending emails

8-6 Task scheduling
and asynchronous execution

TaskExecutor
interface

TaskScheduler
interface

@Async and @Scheduled
annotations

8-7 Caching

Configuring a CacheManager

Caching annotations
- @Cacheable, @CacheEvict and @CachePut

8-8 Running the
MyBank application

8-9 Summary

Chapter 9 - Aspect-oriented
programming

9-1 Introduction

9-2 A simple AOP
example

9-3 Spring AOP
framework

Proxy creation

expose-proxy attribute

9-4 Pointcut
expressions

@Pointcut annotation

execution and args pointcut
designators

bean
pointcut designator

Annotations-based
pointcut designators

9-5 Advice types

Before advice

After returning
advice

After throwing
advice

After advice

Around advice

9-6 Spring AOP - XML
schema-style

Configuring an AOP
aspect

Configuring an
advice

Associating a
pointcut expression with an advice

9-7 Summary

Chapter 10 – Spring
Web MVC basics

10-1 Introduction

10-2 Directory
structure of sample web projects

10-3 Understanding
the ‘Hello World’ web application

HelloWorldController.java – Hello
World web application’s controller class

helloworld.jsp – JSP page that shows
the ‘Hello World !!’ message

myapp-config.xml – Web application
context XML file

web.xml – Web application deployment
descriptor

10-4 DispatcherServlet – the front controller

Accessing ServletContext and ServletConfig
objects

10-5 Developing
controllers using @Controller and @RequestMapping annotations

Developing a ‘Hello
World’ web application using an annotated controller

10-6 MyBank web
application’s requirements

10-7 Spring Web MVC
annotations - @RequestMapping and @RequestParam

Mapping requests to
controllers or controller methods using @RequestMapping

@RequestMapping annotated methods
arguments

@RequestMapping annotated methods
return types

Passing request
parameters to controller methods using @RequestParam

10-8 Validation

10-9 Handling
exceptions using @ExceptionHandler annotation

10-11 Loading root
web application context XML file(s)

10-12 Summary

Chapter 11 – Validation
and data binding in Spring Web MVC

11-1 Introduction

11-2 Adding and
retrieving model attributes using @ModelAttribute annotation

Adding model
attributes using method-level @ModelAttribute annotation

Retrieving model
attributes using @ModelAttribute annotation

Request processing
and @ModelAttribute annotated methods

Behavior of @ModelAttribute annotated method arguments

RequestToViewNameTranslator

11-3 Caching model
attributes using @SessionAttributes annotation

11-4 Data binding
support in Spring

WebDataBinder – data binder for web
request parameters

Configuring a WebDataBinder instance

Allowing or
disallowing fields from data binding process

Inspecting data
binding and validation errors using BindingResult object

11-5 Validation
support in Spring

Validating model
attributes using Spring’s Validator interface

Specifying
constraints using JSR 303 annotations

Validating objects
that use JSR 303 annotations

11-6 Spring’s form tag
library

HTML5 support in
Spring’s form tag library

11-7 Summary

Chapter 12 –Developing
RESTful web services using Spring Web MVC

12-1 Introduction

12-2 Fixed deposit
web service

12-3 Implementing a
RESTful web service using Spring Web MVC

JSON (JavaScript
Object Notation)

FixedDepositWS web
service implementation

12-4 Accessing
RESTful web services using RestTemplate

12-5 Converting Java
objects to HTTP requests and responses and vice versa using HttpMessageConverter

12-6 @PathVariable and @MatrixVariable annotations

12-7 Summary

Chapter 13 – More
Spring Web MVC – internationalization, file upload and asynchronous request processing

13-1 Introduction

13-2 Pre- and
post-processing requests using handler interceptors

Implementing and
configuring a handler interceptor

13-3
Internationalizing using resource bundles

MyBank web
application’s requirements

Internationalizing
and localizing MyBank web application

13-4 Asynchronously
processing requests

Asynchronous request
processing configuration

Returning Callable
from @RequestMapping methods

Returning DeferredResult from @RequestMapping methods

Setting default
timeout value

Intercepting
asynchronous requests

13-5 Type conversion
and formatting support in Spring

Creating a custom Converter

Configuring and
using a custom
Converter

Creating a custom Formatter

Configuring a custom Formatter

Creating AnnotationFormatterFactory to format only @AmountFormat annotated fields

Configuring AnnotationFormatterFactory implementation

13-6 File upload
support in Spring Web MVC

Uploading files
using CommonsMultipartResolver

Uploading files
using StandardServletMultipartResolver

13-7 Summary

Chapter 14 – Securing
applications using Spring Security

14-1 Introduction

14-2 Security
requirements of the MyBank web application

14-3 Securing MyBank
web application using Spring Security

Web request security
configuration

Authentication
configuration

Securing JSP content
using Spring Security’s JSP tab library

Securing methods

14-4 MyBank web
application - securing FixedDepositDetails instances using Spring Security’s ACL module

Deploying and using ch14-bankapp-db-security project

Database tables to
store ACL and user information

User authentication

Web request security

JdbcMutableAclService configuration

Method-level
security configuration

Domain object
instance security

Managing ACL entries
programmatically

MutableAcl and security

14-5 Summary

Appendix A –
Importing and deploying sample projects in Eclipse IDE (or IntelliJ IDEA)

A-1 Setting up the
development environment

A-2 Importing a
sample project into Eclipse IDE (or IntelliJ IDEA)

Importing a sample
project

Configuring the M2_REPO
classpath variable in the Eclipse IDE

A-3 Configuring
Eclipse IDE with Tomcat 7 server

A-4 Deploying a web
project on Tomcat 7 server

Running the Tomcat 7
server in embedded mode

Preface

How to use
this book

Download sample projects

This book
comes with many sample projects that you can download from the following Google
Code project: http://code.google.com/p/getting-started-with-spring-framework-2edition/. You can download the sample projects as a single ZIP file or you
can checkout the sample projects using SVN. For more details, refer to the
above URL.

Import sample projects into your Eclipse or IntelliJ IDEA IDE

If you see
IMPORT chapter<chapter-number>/<project
name>
at any point while reading the book, you should
import the specified project into your Eclipse or IntelliJ IDEA IDE (or any
other IDE that you are using). The sample projects use Maven 3.x
build tool for building the project; therefore, you’ll find a pom.xml file
inside each of the projects. A pom.xml file is also provided at the root of the source code distribution,
which builds all the projects.

Refer
appendix A to see the steps required for importing and running the sample
projects.

Refer to code examples

Each
example listing specifies the sample project name (using Project
label) and the location of the source file (using Source location label). If the Project and Source
location labels are not specified, you can
assume that the code shown in the example listing is not being used anywhere in
the sample projects, and it has been shown purely to simplify understanding.

Conventions
used in this book

Italics
has been used for emphasizing terms

Comic Sans MS has
been used for example listings, Java code, configuration details in XML and
properties files

Comic Sans MS has
been used in example listings to highlight important parts of the code or
configuration

A NOTE highlights an importaint point.

Feedback and
questions

You can
post your feedback and questions to the authors in the following Google Groups
forum: https://groups.google.com/forum/#!forum/getting-started-with-spring-framework

About the
authors

Ashish
Sarin is a Sun Certified Enterprise Architect with
more than 14 years of experience in architecting applications. He is the author
of Spring
Roo 1.1 Cookbook (by Packt Publishing) and Portlets in Action (by Manning Publications)

J
Sharma is a freelance Java developer with extensive
experience in developing Spring applications.

Chapter 1 – Introduction to Spring Framework

1-1
Introduction

In the
traditional Java enterprise application development efforts, it was a
developer’s responsibility to create well-structured, maintainable and easily
testable applications. The developers used myriad design patterns to address
these non-business requirements
of an application. This not only led to low developer productivity, but also
adversely affected the quality of developed applications.

Spring
Framework (or ‘Spring’ in short) is an open source application framework from
SpringSource (http://www.springsource.org)
that simplifies developing Java enterprise applications. It provides the
infrastructure for developing well-structured, maintainable and easily testable
applications. When using Spring Framework, a developer only needs to focus on
writing the business logic of the application, resulting in improved developer
productivity. You can use Spring Framework to develop standalone Java
applications, web applications, applets, or any other type of Java application.

This
chapter starts off with an introduction to Spring Framework modules and its
benefits. At the heart of Spring Framework is its Inversion of Control (IoC) container, which
provides dependency injection (DI) feature. This chapter introduces Spring’s DI feature
and IoC container, and shows how to develop a standalone
Java application using Spring. Towards the end of this chapter, we’ll look at
some of the SpringSource’s projects that use Spring Framework as their
foundation. This chapter will set the stage for the remaining chapters that
delve deeper into the Spring Framework.

NOTE In this book, we’ll use an example Internet Banking application, MyBank, to introduce
Spring Framework features.

1-2 Spring
Framework modules

Spring Framework consists of multiple modules that are grouped based
on the application development features they address. The following table
describes the different module groups in Spring Framework:

 	
 Module group

 	
 Description

 	
 Core container

 	
 Contains modules that form the foundation of
 Spring Framework. The modules in this group provide Spring’s DI feature and
 IoC container implementation.

 	

 AOP and instrumentation

 	

 Contains modules that support AOP
 (Aspect-oriented Programming) and class instrumentation.

 	
 Data Access/Integration

 	
 Contains modules that simplify interaction
 with databases and messaging providers. This module group also contains
 modules that support programmatic and declarative transaction management, and
 object/XML mapping implementations, like JAXB and Castor.

 	
 Web

 	
 Contains modules that simplify developing web
 and portlet applications.

 	
 Test

 	
 Contains a single module that simplifies
 creating unit and integration tests.

The above
table shows that Spring covers every aspect of enterprise application
development; you can use Spring for developing web applications, accessing
databases, managing transactions, creating unit and integration tests, and so
on. The Spring Framework modules are designed in such a way that you only need to include the modules that your application needs. For
instance, to use Spring’s DI feature in your application, you only need to
include the modules grouped under Core container. As you
progress through this book, you’ll find details of some of the modules that are
part of Spring, and examples that show how they are used in developing
applications.

The
following figure shows the inter-dependencies of different modules of Spring:

Figure 1-1 Spring modules
inter-dependencies

You can
infer from the above figure that the modules contained in the Core container group are central to the Spring Framework, and other modules depend
on it. Equally important are the modules contained in the AOP and instrumentation group because they provide AOP features to other modules in the
Spring Framework.

Now, that
you have some basic idea about the areas of application development covered by
Spring, let’s look at the Spring IoC container.

1-3 Spring
IoC container

A Java
application consists of objects that interact with each other to provide application
behavior. The objects with which an object interacts are referred to as its dependencies. For instance, if an object X interacts with objects Y and Z, then
Y and Z are dependencies of object X. DI is a design pattern in which the
dependencies of an object are typically specified as arguments to its
constructor and setter methods. And, these dependencies are injected into the
object when it’s created.

In a
Spring application, Spring IoC container (also referred to as Spring container)
is responsible for creating application objects and injecting their
dependencies. The application objects that the Spring container creates and
manages are referred as beans. As the Spring container is responsible for putting together
application objects, you don’t need to implement design patterns, like Factory,
Service Locator, and so on, to compose your application. DI is also referred to
as Inversion of Control (IoC) because the responsibility of creating and
injecting dependencies is not with the application object but with the Spring container.

Let’s say
that the MyBank application (which is the name of our sample application)
contains two objects, FixedDepositController and FixedDepositService. The following example listing shows that the FixedDepositController object depends on FixedDepositService object:

Example listing 1-1: FixedDepositController class

public class FixedDepositController {

 private FixedDepositService fixedDepositService;

 public FixedDepositController() {

 fixedDepositService = new FixedDepositService();

 }

 public boolean submit() {

 //-- save the fixed deposit details

 fixedDepositService.save(.....);

 }

}

In the
above example listing, FixedDepositController’s constructor creates an instance of FixedDepositService which is later
used in FixedDepositController’s submit method. As FixedDepositController interacts with FixedDepositService, FixedDepositService represents a dependency of FixedDepositController.

To
configure FixedDepositController as a Spring bean, you first need to modify the FixedDepositController class of example listing 1-1 such that it accepts FixedDepositService dependency as a constructor argument or as a setter method
argument. The following example listing shows the modified FixedDepositController class:

Example listing 1-2: FixedDepositController class – FixedDepositService is passed as a constructor argument

public class FixedDepositController {

 private FixedDepositService fixedDepositService;

 public FixedDepositController(FixedDepositService
fixedDepositService) {

 this.fixedDepositService = fixedDepositService;

 }

 public boolean submit() {

 //-- save the fixed deposit details

 fixedDepositService.save(.....);

 }

}

The above
example listing shows that the FixedDepositService instance is now passed as a constructor argument to the FixedDepositController instance. Now, the FixedDepositService class can be configured as a Spring bean. Notice that the FixedDepositController class doesn’t implement or extend from any Spring interface or
class.

For a
given application, information about application objects and their dependencies
is specified using configuration
metadata. Spring IoC container reads application’s configuration
metadata to instantiate application objects and inject their dependencies. The
following example listing shows the configuration metadata (in XML format) for
an application that consists of MyController and MyService classes:

Example listing 1-3: Configuration
metadata

<beans>

 <bean id="myController" class="sample.spring.controller.MyController">

 <constructor-arg index="0"
ref="myService" />

 </bean>

 <bean id="myService" class="sample.spring.service.MyService"/>

</beans>

In the
above example listing, each <bean> element defines an application object that is managed by the Spring
container, and the <constructor-arg> element specifies that an instance of MyService is
passed as an argument to MyController’s constructor. The <bean> element is discussed in detail later in this chapter, and the <constructor-arg> element is discussed in chapter 2.

Spring
container reads the configuration metadata (like the one shown in example
listing 1-3) of an application and creates the application objects defined by <bean>
elements and injects their dependencies. Spring container makes use of Java Reflection API (http://docs.oracle.com/javase/tutorial/reflect/index.html) to create application objects and inject their
dependencies. The following figure summarizes how the Spring container works:

Figure
1-2
Spring container reads application’s configuration metadata and creates a
fully-configured application

The
configuration metadata can be supplied to the Spring container via XML (as
shown in example listing 1-3), Java annotations (refer chapter 6) and also
through the Java code (refer chapter 6).

As
the Spring container is responsible for creating and managing application
objects, enterprise services (like transaction management, security, remote
access, and so on) can be transparently applied to the objects by the Spring
container. The ability of the Spring container to enhance the application
objects with additional functionality makes it possible for you to model your
application objects as simple Java objects (also referred to as POJOs
or Plain
Old Java Objects). Java classes corresponding to POJOs
are referred to as POJO classes,
which are nothing but Java classes that don’t implement or extend
framework-specific interfaces or classes. The enterprise services, like
transaction management, security, remote access, and so on, required by these
POJOs are transparently provided by the Spring container.

Now,
that we know how Spring container works, let’s look at some examples that
demonstrate benefits of developing applications using Spring.

1-4 Benefits
of using Spring Framework

In
the previous section, we discussed the following benefits of using Spring:

§
Spring
simplifies composing Java applications by taking care of creating application
objects and injecting their dependencies

§
Spring
promotes developing applications as POJOs

Spring
also simplifies interaction with JMS providers, JNDI, MBean servers, email
servers, databases, and so on, by providing a layer of abstraction that takes
care of the boilerplate code.

Let’s
take a quick look at a few examples to better understand the benefits of
developing applications using Spring.

Consistent approach to managing local and global transactions

If you are
using Spring for developing transactional applications, you can use Spring’s declarative transaction management support to manage transactions.

The
following example listing shows the FixedDepositService class of MyBank application:

Example listing
1-4 – FixedDepositService class

public class FixedDepositService {

 public FixedDepositDetails getFixedDepositDetails(
.....) { }

 public boolean createFixedDeposit(FixedDepositDetails
fixedDepositDetails) { }

}

The FixedDepositService class is a POJO class that defines methods to create and retrieve
details of fixed deposits. The following figure shows the form for creating a
new fixed deposit:

Figure 1-3 HTML
form for creating a new fixed deposit

A customer
enters the fixed deposit amount, tenure and email id information in the above
form and clicks the Save button to create a new fixed deposit. The FixedDepositService’s createFixedDeposit method (refer example listing 1-1) is invoked to create the fixed
deposit. The createFixedDeposit method debits the amount entered by the customer from his bank
account, and creates a fixed deposit of the same amount.

Let’s say
that information about the bank balance of customers is stored in BANK_ACCOUNT_DETAILS database table, and the fixed deposit details are stored in FIXED_DEPOSIT_DETAILS database table. If a customer creates a fixed deposit of amount x, amount x is
subtracted from the BANK_ACCOUNT_DETAILS table, and a new record is inserted in FIXED_DEPOSIT_DETAILS table to reflect the newly created fixed deposit. If BANK_ACCOUNT_DETAILS table is not updated or a new record is not inserted
in FIXED_DEPOSIT_DETAILS table, it’ll leave the system in an inconsistent state. This means
the createFixedDeposit method must be executed within a transaction.

The
database used by the MyBank application represents a transactional resource. In the traditional approach to perform a set of database
modifications as a single unit of work, you’ll first disable auto-commit mode
of JDBC connection, then execute SQL statements, and finally commit (or
rollback) the transaction. The following example listing shows how to manage
database transactions in the createFixedDeposit method using the traditional approach:

Example listing 1-5 – Programmatically managing database transaction
using JDBC Connection object

import java.sql.Connection;

import java.sql.SQLException;

public class FixedDepositService {

 public FixedDepositDetails getFixedDepositDetails(
.....) { }

 public boolean createFixedDeposit(FixedDepositDetails
fixedDepositDetails) {

 Connection con = ;

 try {

 con.setAutoCommit(false);

 //-- execute SQL statements
that modify database tables

 con.commit();

 } catch(SQLException
sqle) {

 if(con != null) {

 con.rollback();

 }

 }

 }

}

The above
example listing shows that the createFixedDeposit method programmatically manages database transaction using JDBC Connection
object. This approach is suitable for application scenarios in which a single
database is involved. Transactions that are resource-specific, like the
transaction associated with a JDBC Connection, are referred to as local transactions.

When
multiple transactional resources are involved, JTA (Java Transaction API) is
used for managing transactions. For instance, if you want to send a JMS message
to a messaging middleware (a transactional resource) and update a database
(another transactional resource) in the same transaction, you must use a JTA
transaction manager to manage transactions. JTA transactions are also referred
to as global (or distributed)
transactions. To use JTA, you fetch UserTransaction object (which is part of JTA API) from JNDI and programmatically
start and commit (or rollback) transactions.

As
you can see, you can either use JDBC
Connection
(for
local transactions) or UserTransaction
(for
global transactions) object to programmatically manage transactions. It is
important to note that a local transaction cannot
run within a global transaction. This means that if you want database updates
in
createFixedDeposit
method
(refer example listing 1-5) to be part of a JTA transaction, you need to modify
the
createFixedDeposit
method
to use the
UserTransaction
object
for transaction management.

Spring
simplifies transaction management by providing a layer of abstraction that
gives a consistent
approach to managing both local and global
transactions. This means that if you write the createFixedDeposit method (refer
example listing 1-5) using Spring’s transaction abstraction, you don’t need to
modify the method when you switch from local to global transaction management,
or vice versa. Spring’s transaction abstraction is explained in chapter 7.

Declarative
transaction management

Spring
gives you the option to use declarative
transaction management. You can annotate a method
with Spring’s @Transactional annotation and let Spring handle transactions, as shown here:

Example listing
1-6 – @Transactional annotation usage

import
org.springframework.transaction.annotation.Transactional;

public class FixedDepositService {

 public FixedDepositDetails getFixedDepositDetails(
.....) { }

 @Transactional

 public boolean createFixedDeposit(FixedDepositDetails
fixedDepositDetails) { }

}

The above
example listing shows that the FixedDepositService class doesn’t implement or extend from any Spring-specific
interface or class to use Spring’s transaction management facility. The Spring
Framework transparently provides transaction management feature to @Transactional
annotated createFixedDeposit method. This shows that Spring is a non-invasive framework because it doesn’t require your application objects to be
dependent upon Spring-specific classes or interfaces. Also, you don’t need to
directly work with transaction management APIs to manage transactions.

Security

Security
is an important aspect of any Java application. Spring Security (http://static.springsource.org/spring-security/site/)
is a SpringSource’s project that is built on top of Spring Framework. Spring
Security provides authentication and authorization features that you can use
for securing Java applications.

Let’s say
that the following 3 user roles have been identified for the MyBank
application: LOAN_CUSTOMER, SAVINGS_ACCOUNT_CUSTOMER and APPLICATION_ADMIN. A customer must be associated with the SAVINGS_ACCOUNT_CUSTOMER or the APPLICATION_ADMIN role to invoke the createFixedDeposit method of FixedDepositService class (refer example listing 1-6). Using Spring Security you can
easily address this requirement by annotating createFixedDeposit method with Spring
Security’s @Secured annotation, as shown in the following example listing:

Example listing
1-7 – Secured createFixedDeposit method

import org.springframework.transaction.annotation.Transactional;

import
org.springframework.security.access.annotation.Secured;

public class FixedDepositService {

 public FixedDepositDetails
getFixedDepositDetails(.....) { }

@Transactional

@Secured({
"SAVINGS_ACCOUNT_CUSTOMER", "APPLICATION_ADMIN" })

public boolean createFixedDeposit(FixedDepositDetails
fixedDepositDetails) { }

}

If you
annotate a method with Spring Security’s @Secured annotation, security feature
is transparently applied to the method by the Spring Security framework. The
above example listing shows that for implementing method-level security you don’t need to extend or implement any Spring-specific
classes or interfaces. Also, you don’t need to write security-related code in
your business methods.

Spring
Security framework is discussed in detail in chapter 14.

JMX (Java Management Extensions)

Spring’s
JMX support simplifies incorporating JMX technology in your applications.

Let’s say
that the fixed deposit facility of MyBank application should only be available to customers from 9:00 AM to
6:00 PM everyday. To address this requirement, a variable is added to the FixedDepositService class, which acts as a flag indicating whether the fixed deposit
service is active or inactive. The following example listing shows the FixedDepositService class that uses such a flag:

Example listing
1-8 – FixedDepositService with active variable

public class FixedDepositService {

 private boolean active;

 public FixedDepositDetails getFixedDepositDetails(
.....) {

 if(active) { }

 }

 public boolean createFixedDeposit(FixedDepositDetails
fixedDepositDetails) {

 if(active) { }

 }

 public void activateService() {

 active = true;

 }

 public void deactivateService() {

 active = false;

 }

}

The above
example listing shows that a variable named active is added to the FixedDepositService class. If the value of the active variable is true, the getFixedDepositDetails and createFixedDeposit methods work as expected. If the value of the active
variable is false, the getFixedDepositDetails and createFixedDeposit methods throw an exception indicating that the fixed deposit
service is currently inactive. The activateService and deactivateService methods set the value of active variable to true and false,
respectively.

Now, who
calls the activateService and deactivateService methods? Let’s say a separate scheduler application, Bank App Scheduler, runs at 9:00 AM and 6:00 PM to execute activateService and deactivateService methods, respectively. The Bank App Scheduler application uses JMX
(Java Management Extensions) API to remotely interact with FixedDepositService instance.

NOTE
Refer to the following article to learn more about JMX: http://docs.oracle.com/javase/tutorial/jmx/index.html.

As Bank App
Scheduler uses JMX to change the value of the active variable of the FixedDepositService instance, you need to register the FixedDepositService instance as a managed bean (or MBean)
with an MBean server, and expose FixedDepositService’s activateService and deactivateService methods as JMX operations. In Spring, you register instances of a
class with the MBean server by annotating the class with Spring’s @ManagedResource annotation, and expose the methods of the class as JMX operations
using Spring’s @ManagedOperation annotation.

The
following example listing shows usage of @ManagedResource and @ManagedOperation annotations to register instances of the FixedDepositService class with the MBean server, and to expose its activateService and deactivateService
methods as JMX operations:

Example listing
1-9 – FixedDepositService class that uses Spring’s JMX support

import
org.springframework.jmx.export.annotation.ManagedOperation;

import
org.springframework.jmx.export.annotation.ManagedResource;

@ManagedResource(objectName =
"fixed_deposit_service:name=FixedDepositService")

public class FixedDepositService {

 private boolean active;

 public FixedDepositDetails getFixedDepositDetails(
.....) {

 if(active) { }

 }

 public boolean createFixedDeposit(FixedDepositDetails
fixedDepositDetails) {

 if(active) { }

 }

 @ManagedOperation

 public void activateService() {

 active = true;

 }

 @ManagedOperation

 public void deactivateService() {

 active = false;

 }

}

The above
example listing shows that the FixedDepositService class doesn’t directly use JMX API to register its instances with
the MBean server and to expose its methods as JMX operations.

JMS (Java Message Service)

Spring’s
JMS support simplifies sending and receiving messages from JMS providers.

In MyBank application, when a customer submits a request to receive details of
their fixed deposits via email, the FixedDepositService sends the request
details to a JMS messaging middleware (like ActiveMQ). The request is later
processed by a message listener. Spring simplifies interaction with JMS
providers by providing a layer of abstraction. The following example listing
shows how FixedDepositService class sends request details to a JMS provider using Spring’s JmsTemplate:

Example listing
1-10 – FixedDepositService that sends JMS
messages

import org.springframework.beans.factory.annotation.Autowired;

import
org.springframework.jms.core.JmsTemplate;

public class FixedDepositService {

 @Autowired

 private transient JmsTemplate jmsTemplate;

 public boolean submitRequest(Request
request) {

 jmsTemplate.convertAndSend(request);

 }

}

The above
example listing shows that the FixedDepositService defines a variable of type JmsTemplate, and is annotated with
Spring’s @Autowired annotation. For now, you can assume that the @Autowired
annotation provides access to a JmsTemplate instance. The JmsTemplate instance knows about the JMS destination to which the JMS message
is to be sent. How the JmsTemplate is configured is described in detail in chapter 8. The FixedDepositService’s submitRequest method invokes JmsTemplate’s convertAndSend method to send request details (represented by Request
argument of submitRequest method) as a JMS message to the JMS provider.

Once
again, the above example listing shows that if you are using Spring Framework
to send messages to JMS providers, then you don’t need to directly deal with
JMS API.

Caching

Spring’s
cache abstraction provides a consistent approach to use caching in your
application.

It’s
common to use caching solutions to improve the performance of an application. MyBank application uses a caching product to
improve the performance of read operations for fixed deposit details. Spring Framework simplifies
interacting with different caching solutions by abstracting caching-related
logic.

The
following example listing shows that the FixedDepositService’s getFixedDepositDetails method uses Spring’s cache abstraction feature to cache fixed
deposit details:

Example listing
1-11 – FixedDepositService that caches fixed deposit details

import
org.springframework.cache.annotation.Cacheable;

public class FixedDepositService {

 @Cacheable("FixedDeposits")

 public FixedDepositDetails getFixedDepositDetails(
.....) { }

 public boolean createFixedDeposit(FixedDepositDetails
fixedDepositDetails) { }

}

In the
above example listing, Spring’s @Cacheable annotation indicates that the fixed deposit details returned by the
getFixedDepositDetails method are cached.
If the getFixedDepositDetails method is invoked with the same argument
value(s), the getFixedDepositDetails method is not
executed, and the fixed deposit details are returned from the cache. This shows
that if you are using Spring Framework you don’t need to write caching-related
logic in your classes. Spring’s cache abstraction is explained in detail in
chapter 8.

In this
section, we saw that Spring Framework simplifies developing enterprise
applications by transparently providing services to POJOs, thereby shielding
developers from lower level API details. Spring also provides easy integration
with standard frameworks, like Hibernate, iBATIS, Quartz, JSF, Struts, EJB, and
so on, which makes Spring an ideal choice for enterprise application
development.

Now, that
we have looked at some of the benefits of using Spring Framework, let’s take a
look at how to develop a simple Spring application.

1-5 A simple Spring application

In this
section, we’ll look at a simple Spring application that uses Spring’s DI
feature. To use Spring’s DI feature in an application, follow these steps:

1.
identify application objects and their
dependencies

2.
create POJO classes corresponding to the application
objects identified in step 1

3.
create configuration metadata that depicts application objects and their dependencies

4.
create an instance of Spring IoC container and
pass the configuration metadata to it

5.
access application objects from the Spring IoC
container instance

Let’s now
look at above mentioned steps in the context of MyBank application.

Identifying
application objects and their dependencies

We
discussed earlier that the MyBank application shows a form for creating a fixed
deposit (refer figure 1-3) to its users for creating a fixed deposit. The
following sequence diagram shows the application objects (and their
interaction) that come into picture when the user submits the form:

Figure 1-4 MyBank’s application objects and their dependencies

In the
above sequence diagram, FixedDepositController represents a web controller that receives the request when the form
is submitted. The fixed deposit details are contained in the FixedDepositDetails object. The FixedDepositController invokes the createFixedDeposit method of FixedDepositService (a service layer object). Then, FixedDepositService invokes FixedDepositDao object (a data access object) to save the fixed deposit details in
the application’s data store. So, we can interpret from the above diagram that FixedDepositService is a dependency of FixedDepositController object, and FixedDepositDao
is a dependency of FixedDepositService object.

IMPORT chapter 1/ch01-bankapp-xml (This project shows a simple Spring
application that uses Spring’s DI feature. To run the application, execute the main method of
the MyBankApp class of this project)

Creating POJO
classes corresponding to identified application objects

Once you
have identified application objects, the next step is to create POJO classes
corresponding to these application objects. POJO classes corresponding to the FixedDepositController, FixedDepositService and FixedDepositDao application objects are available in ch01-bankapp-xml project. The ch01-bankapp-xml project represents a simplified version of MyBank application that uses
Spring’s DI feature. You should import the ch01-bankapp-xml project into your
IDE as in the remaining steps we’ll be looking at the files contained in this
project.

In section
1-3 we discussed that a dependency is passed to an
application object as a constructor argument or as a setter method argument. The following code listing shows that an instance of FixedDepositService (a dependency of FixedDepositController) is passed as a setter method argument to the FixedDepositController object:

Example listing 1-12 – FixedDepositController class

Project – ch01-bankapp-xml

Source location -
src/main/java/sample/spring/chapter01/bankapp

package
sample.spring.chapter01.bankapp;

.....

public
class FixedDepositController {

.....

private FixedDepositService fixedDepositService;

.....

public void setFixedDepositService(FixedDepositService fixedDepositService) {

logger.info("Setting fixedDepositService property");

this.fixedDepositService = fixedDepositService;

}

.....

public void submit() {

fixedDepositService.createFixedDeposit(new FixedDepositDetails(1,
10000,

365, "someemail@something.com"));

}

.....

}

In the
above example listing, FixedDepositService dependency is passed to FixedDepositController through setFixedDepositService method. We’ll soon see that the setFixedDepositService setter method is
invoked by Spring.

NOTE
If you look at the FixedDepositController, FixedDepositService and FixedDepositDao classes, you’ll notice that none of these classes
implement any Spring-specific interface or extend from any Spring-specific
class.

Let’s now
look at how application objects and their dependencies are specified in the
configuration metadata.

Creating the
configuration metadata

We saw in
section 1-3 that the configuration metadata specifies application objects and
their dependencies, which is read by the Spring container to instantiate
application objects and inject their dependencies. In this section, we’ll first
look at what other information is contained in the configuration metadata,
followed by an in-depth look at how configuration metadata is specified in XML
format.

The
configuration metadata specifies information about the enterprise services
(like transaction management, security and remote access) that are required by
the application. For instance, if you want Spring to manage transactions, you
need to configure an implementation of Spring’s PlatformTransactionManager interface
in the configuration metadata. The PlatformTransactionManager
implementation is responsible for managing transactions (refer chapter 7 to
know more about Spring’s transaction management feature).

If your
application interacts with messaging middlewares (like ActiveMQ), databases
(like MySQL), e-mail servers, and so on, then Spring-specific objects that
simplify interacting with these external systems are also defined in the
configuration metadata. For instance, if your application sends or receives JMS
messages from ActiveMQ, then you can configure Spring’s JmsTemplate
class in the configuration metadata to simplify interaction with ActiveMQ. We
saw in example listing 1-10 that if you use JmsTemplate for sending messages to a
JMS provider, then you don’t need to deal with lower-level JMS API (refer chapter
8 to know more about Spring’s support for interacting with JMS providers).

You can
supply the configuration metadata to the Spring container via an XML file or
through annotations in POJO classes. Starting with Spring 3.0, you can also
supply the configuration metadata to the Spring container through Java classes
annotated with Spring’s @Configuration annotation. In this section, we’ll see how configuration metadata
is specified in XML format. In chapter 6, we’ll see how configuration metadata
is supplied via annotations in POJO classes and through @Configuration
annotated Java classes.

You
provide the configuration metadata for an application in XML format by creating
an application
context XML file that contains information about
the application objects and their dependencies. Example listing 1-3 showed how
an application context XML file looks like. The following XML shows the
application context XML file of MyBank application that consists of FixedDepositController, FixedDepositService and FixedDepositDao objects (refer figure 1-4 to see how these objects interact with
each other):

Example listing 1-13 – applicationContext.xml - MyBank’s application context XML file

Project
– ch01-bankapp-xml

Source location - src/main/resources/META-INF/spring

<?xml version="1.0"
encoding="UTF-8" standalone="no"?>

<beans xmlns =
"http://www.springframework.org/schema/beans"

 xmlns:xsi =
"http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation =
"http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd">

 <bean id="controller"

 class="sample.spring.chapter01.bankapp.FixedDepositController">

 <property name="fixedDepositService"
ref="service" />

 </bean>

 <bean id="service"
class="sample.spring.chapter01.bankapp.FixedDepositService">

 <property name="fixedDepositDao"
ref="dao" />

 </bean>

 <bean id="dao"
class="sample.spring.chapter01.bankapp.FixedDepositDao"/>

</beans>

The
following are the important points to note about the application context XML file
shown above:

·
The
<beans> element is the root element of the application context XML file,
and is defined in spring-beans-4.0.xsd schema (also referred to as Spring’s beans schema). The spring-beans-4.0.xsd schema is contained in spring-beans-4.0.0.RELEASE.jar JAR
file that comes with the Spring Framework distribution.

·
Each <bean> element configures an application object that is managed by the Spring container. In Spring Framework’s terminology, a <bean>
element represents a bean
definition. The object that the Spring container
creates based on the bean definition is referred to as a bean. The id attribute specifies a unique name for the bean, and the class
attribute specifies the fully-qualified class name of the bean. You can also
use the name attribute of <bean> element to specify aliases for the bean. In MyBank
application, the application objects are FixedDepositController, FixedDepositService and FixedDepositDao; therefore, we have 3 <bean> elements - one for each
application object. As application objects configured by <bean>
elements are managed by the Spring container, the responsibility for creating
them and injecting their dependencies is with the Spring container. Instead of
directly creating instances of application objects defined by <bean>
elements, you should obtain them from the Spring container. Later in this
section, we’ll look at how to obtain application objects managed by Spring
container.

·
No <bean> element is defined corresponding to the FixedDepositDetails domain object of MyBank application. This is because domain objects
are not typically managed by the Spring container; they are created by the
ORM framework (like Hibernate) used by the application, or you create them
programmatically using the new operator.

·
The <property> element specifies a
dependency (or a configuration property) of the bean configured by the <bean>
element. The <property> element corresponds to a JavaBean-style setter method in the bean class which is invoked by the Spring container
to set a dependency (or a configuration property) of the bean.

Let’s now
look at how dependencies are injected via setter methods.

Injecting
dependencies via setter methods

To
understand how dependencies are injected via setter methods defined in the bean
class, let’s once again look at the FixedDepositController class of MyBank
application:

Example listing 1-14 – FixedDepositController class

Project
– ch01-bankapp-xml

Source location - src/main/java/sample/spring/chapter01/bankapp

package sample.spring.chapter01.bankapp;

import org.apache.log4j.Logger;

public class FixedDepositController {

 private static Logger logger =
Logger.getLogger(FixedDepositController.class);

 private FixedDepositService fixedDepositService;

 public FixedDepositController() {

 logger.info("initializing");

 }

 public void setFixedDepositService(FixedDepositService
fixedDepositService) {

 logger.info("Setting fixedDepositService
property");

 this.fixedDepositService = fixedDepositService;

 }

}

The above
example listing shows that the FixedDepositController class declares an instance variable named fixedDepositService of type FixedDepositService. The fixedDepositService variable is set by the setFixedDepositService method - a JavaBean-style setter
method for fixedDepositService variable. This is
an example of setter-based
DI, wherein a setter method satisfies a dependency.

The
following figure describes the bean definition for the FixedDepositController class in the applicationContext.xml
file (refer example listing 1-13):

Figure 1-5 Defining dependencies
using <property> elements

The above
bean definition shows that the FixedDepositController bean defines its dependence on FixedDepositService bean via <property> element. The <property> element’s name attribute corresponds to the JavaBean-style setter method in the
bean class that is invoked by the Spring container at the time of bean
creation. The <property> element’s ref attribute identifies the Spring bean whose instance needs to be
created and passed to the JavaBean-style setter method. The value of ref attribute
must match the id attribute’s value (or one of the names specified by the name attribute)
of a <bean> element in the configuration metadata.

In figure
1-5, the value of <property> element’s name attribute is fixedDepositService, which means that the <property> element corresponds
to the setFixedDepositService setter method of FixedDepositController class (refer example listing 1-14). As the value of <property> element’s ref attribute is service, the <property> element refers to the <bean> element whose id attribute’s
value is service. Now, the <bean> element whose id attribute’s value is service is the FixedDepositService bean (refer example listing 1-13). Spring container creates an
instance of FixedDepositService class (a dependency), and invokes the setFixedDepositService method (a JavaBean-style setter method for fixedDepositService variable) of FixedDepositController (a dependent object), passing the FixedDepositService instance.

In the
context of FixedDepositController application object, the following figure summarizes the purpose of name and ref attributes
of <property> element:

Figure 1-6 <property> element’s name attribute corresponds to a JavaBean-style setter method that satisfies
a bean dependency, and ref attribute refers to another bean.

The above
figure shows that fixedDepositService value of name attribute corresponds to the setFixedDepositService method of FixedDepositController class, and service value of ref attribute refers to the bean whose id is service.

NOTE
It is fairly common to refer to a bean definition by its name (which is id attribute’s value) or type (which is class attribute’s value) or the interface implemented
by the bean class. For instance, you can refer to ‘FixedDepositController bean’ as ‘controller bean’. And, if the FixedDepositController class implements FixedDepositControllerIntf interface, you can refer to ‘FixedDepositController bean’ as ‘FixedDepositControllerIntf bean’.

The
following diagram summarizes how the Spring container creates beans and injects
their dependencies based on the configuration metadata supplied by the applicationContext.xml file (refer example listing 1-13) of MyBank application:

Figure 1-7 - The sequence in
which Spring IoC container creates beans and injects their dependencies.

The above
figure shows the sequence of steps followed by the Spring IoC container to
create FixedDepositController, FixedDepositService and FixedDepositDao beans and inject their dependencies. Before attempting to create
beans, the Spring container reads and validates the configuration metadata supplied
by the applicationContext.xml file. The order in which the beans are created by the Spring
container depends on the order in which they are defined in the applicationContext.xml file. Spring container ensures that the dependencies of a bean are
completely configured before the setter method is invoked. For example, the FixedDepositController bean is dependent on FixedDepositService bean; therefore,
Spring container configures the FixedDepositService bean before invoking the setFixedDepositService method of FixedDepositController bean.

The bean
definitions that we have seen so far, instruct Spring container to create bean
instances by invoking the no-argument constructor of the bean class, and inject dependencies using
setter-based DI. In chapter 2, we’ll look at bean definitions that instruct
Spring container to create a bean instance via a factory method defined in a class. Also, we’ll look at how to inject dependencies
through constructor arguments (referred to as constructor-based DI), through arguments to the factory method that creates the bean
instance, and by using setter-based DI on the bean instance returned by the
factory method.

Let’s now
look at how to create an instance of Spring container and pass configuration
metadata to it.

Creating an
instance of Spring container

Spring’s ApplicationContext object represents an instance of Spring container. Spring provides
a few built-in implementations of ApplicationContext interface, like ClassPathXmlApplicationContext, FileSystemXmlApplicationContext, XmlWebApplicationContext, XmlPortletApplicationContext, and so on. The choice of the ApplicationContext implementation
depends on how you have defined the configuration metadata (using XML,
annotations or Java code), and the type of your application (standalone, web or
portlet application). For instance, ClassPathXmlApplicationContext and FileSystemXmlApplicationContext classes are suitable for standalone applications in which configuration metadata is supplied in XML
format, XmlWebApplicationContext is suitable for web applications in which the configuration metadata is supplied in XML
format, AnnotationConfigWebApplicationContext is suitable for web applications in which configuration metadata is supplied through
Java code, and so on.

As MyBank application represents a standalone application,
we can use either ClassPathXmlApplicationContext or FileSystemXmlApplicationContext class to create an instance of Spring
container. You should note that the ClassPathXmlApplicationContext class loads an application context XML file
from the specified classpath
location, and the FileSystemXmlApplicationContext class loads an application context XML file
from the specified location on the filesystem.

The
following BankApp class of MyBank application shows that an instance of Spring
container is created using the ClassPathXmlApplicationContext class:

Example listing 1-15 – BankApp class

Project
– ch01-bankapp-xml

Source location - src/main/java/sample/spring/chapter01/bankapp

package sample.spring.chapter01.bankapp;

import
org.springframework.context.ApplicationContext;

import
org.springframework.context.support.ClassPathXmlApplicationContext;

public class BankApp {

 public static void main(String args[])
{

ApplicationContext context = new ClassPathXmlApplicationContext(

 "classpath:META-INF/spring/applicationContext.xml");

 }

}

The above
example listing shows the BankApp’s main method, which is responsible for bootstrapping the Spring container.
The classpath location of the application context XML file is passed to the
constructor of ClassPathXmlApplicationContext class. The creation of ClassPathXmlApplicationContext
instance results in creation of those beans in the application context XML file
that are singleton-scoped and set to be pre-instantiated. In chapter 2, we’ll discuss bean scopes, and what it means to have beans pre- or lazily-instantiated by Spring container. For now, you can assume that the beans defined
in the applicationContext.xml file of MyBank application are singleton-scoped and set to be
pre-instantiated. This means that the beans defined in the applicationContext.xml file are created when an instance of ClassPathXmlApplicationContext is
created.

Now, that
we have seen how to create an instance of the Spring container, let’s look at
how to retrieve bean instances from the Spring container.

Access beans
from the Spring container

The
application objects defined via <bean> elements are created and managed by the Spring container. You can
access instances of these application objects by calling one of the getBean
methods of the ApplicationContext interface.

The
following example listing shows the main method of BankApp class
that retrieves an instance of FixedDepositController bean from the Spring container and invokes its methods:

Example listing 1-16 – BankApp class

Project
– ch01-bankapp-xml

Source location - src/main/java/sample/spring/chapter01/bankapp

package sample.spring.chapter01.bankapp;

import org.apache.log4j.Logger;

import
org.springframework.context.ApplicationContext;

import
org.springframework.context.support.ClassPathXmlApplicationContext;

public class BankApp {

 private static Logger logger = Logger.getLogger(BankApp.class);

 public static void main(String args[])
{

 ApplicationContext
context = new ClassPathXmlApplicationContext(

"classpath:META-INF/spring/applicationContext.xml");

 FixedDepositController
fixedDepositController =

 (FixedDepositController)
context.getBean("controller");

 logger.info("Submission
status of fixed deposit : " + fixedDepositController.submit());

 logger.info("Returned fixed
deposit info : " + fixedDepositController.get());

 }

}

At first, the
ApplicationContext’s getBean method is invoked to retrieve an instance of FixedDepositController bean from the Spring container, followed by invocation of submit and get methods of
FixedDepositController bean. The argument passed to the getBean method is the name of the
bean whose instance you want to retrieve from the Spring container. The name of
the bean passed to the getBean method must be the value of the id or name attribute of the bean that you want to retrieve. If no bean with
the specified name is registered with the Spring container, an exception is
thrown by the getBean method.

In example
listing 1-16, to configure the FixedDepositController instance, we didn’t programmatically create an instance of FixedDepositService and set it on the FixedDepositController instance. Also, we didn’t create an instance of FixedDepositDao and set it on the FixedDepositService instance. This is because the task of creating dependencies, and
injecting them into the the dependent objects is handled by the Spring
container.

If you go
to ch01-bankapp-xml project and execute the main method of BankApp class,
you’ll see the following output on the console:

INFO sample.spring.chapter01.bankapp.FixedDepositController -
initializing

INFO sample.spring.chapter01.bankapp.FixedDepositService -
initializing

INFO sample.spring.chapter01.bankapp.FixedDepositDao -
initializing

INFO sample.spring.chapter01.bankapp.FixedDepositService -
Setting fixedDepositDao property

INFO sample.spring.chapter01.bankapp.FixedDepositController -
Setting fixedDepositService property

INFO sample.spring.chapter01.bankapp.BankApp - Submission status
of fixed deposit : true

INFO sample.spring.chapter01.bankapp.BankApp - Returned fixed
deposit info : id :1, deposit amount : 10000.0, tenure : 365, email : someemail@something.com

The above
output shows that Spring container creates an instance of each of the beans
defined in the applicationContext.xml file of MyBank application. Also, Spring container uses
setter-based DI to inject an instance of FixedDepositService into FixedDepositController instance, and an instance of FixedDepositDao into the FixedDepositService instance.

Let’s now look at some of the frameworks that are built on top of
Spring Framework.

1-6
Frameworks built on top of Spring

Though
there are many frameworks from SpringSource that use Spring Framework as the
foundation, we’ll look at some of the widely popular ones. For a more
comprehensive list of frameworks, and for more details about an individual
framework, it’s recommended that you visit the SpringSource website (www.springsource.org).

The following table provides a high-level overview of the frameworks
from SpringSource that are built on top of Spring Framework:

 	
 Framework

 	
 Description

 	
 Spring Security

 	
 Authentication and authorization framework for enterprise
 applications. You need to configure a few beans in your application context
 XML file to incorporate authentication and authorization features into your
 application.

 	
 Spring Data

 	
 Provides a consistent programming model to interact with different
 types of databases. For instance, you can use it to interact with
 non-relational databases, like MongoDB or Neo4j, and you can also use it for
 accessing relational databases using JPA.

 	
 Spring Batch

 	
 If your application requires bulk processing, this framework is
 for you.

 	
 Spring Integration

 	
 Provides Enterprise Application Integration (EAI) capabilities to
 applications.

 	
 Spring Social

 	
 If your application requires interaction with social media
 websites, like Facebook and Twitter, then you’ll find this framework highly
 useful.

 	
 Spring BlazeDS Integration

 	
 If you are developing an Adobe Flex based application, you can use
 this framework to connect Flex frontend with Spring-based business tier.

As the frameworks mentioned in the above table are built on
top of Spring Framework, before using any of these frameworks make sure that
they are compatible with the Spring Framework version that you are using.

1-7 Summary

In this
chapter, we looked at the benefits of using Spring Framework. We also looked at
a simple Spring application that showed how to specify configuration metadata
in XML format, create the Spring container instance and retrieve beans from it.
In the next chapter, we’ll look at some of the foundation concepts of Spring
Framework.

Chapter 2 – Spring Framework basics

2-1
Introduction

In the
previous chapter, we saw that the Spring container invokes the no-argument
constructor of a bean class to create a bean instance, and setter-based DI is
used to set bean dependencies. In this chapter, we’ll go a step further and
look at:

§ Spring’s
support for ‘programming to interfaces’ design principle

§ different
approaches to instantiating Spring beans

§ constructor-based
DI for passing bean dependencies as constructor arguments

§ constructor-
and setter-based DI for passing simple String values to beans, and

§ bean
scopes

Let’s begin
this chapter with looking at how Spring improves testability of applications by
supporting ‘programming to interfaces’ design principle.

2-2
Programming to interfaces design principle

In section
1-5 of chapter 1, we saw that a dependent POJO class contained reference to the
concrete class of the dependency. For example, the FixedDepositController class contained reference to the FixedDepositService class, and the FixedDepositService class contained reference to the FixedDepositDao class. If a dependent
class has direct reference to the concrete class of the dependency, it results
in tight coupling between the classes. This means that if you want to
substitute a different implementation of the dependency, it’d require changing
the dependent class.

Let’s now
look at a scenario in which a dependent class contains direct reference to the
concrete class of the dependency.

Scenario:
Dependent class contains reference to the concrete class of dependency

Let’s say
that the FixedDepositDao class makes use of plain JDBC to interact with the database. To
simplify database interaction, you create another DAO implementation, FixedDepositHibernateDao, which uses Hibernate ORM for database interaction. Now, to switch
from plain JDBC to Hibernate ORM implementation, you’ll need to change FixedDepositService class to use FixedDepositHibernateDao class instead of FixedDepositDao, as shown in the following example listing:

Example listing 2-1 – FixedDepositService class

public class FixedDepositService {

 private FixedDepositHibernateDao fixedDepositDao;

 public void setFixedDepositDao(FixedDepositHibernateDao fixedDepositDao)
{

this.fixedDepositDao = fixedDepositDao;

 }

 public FixedDepositDetails getFixedDepositDetails(long
id) {

 return fixedDepositDao.getFixedDepositDetails(id);

 }

 public boolean createFixedDeposit(FixedDepositDetails fixedDepositDetails)
{

 return fixedDepositDao.createFixedDeposit(fixedDepositDetails);

 }

}

The above
example listing shows that reference to FixedDepositDao class was replaced by
FixedDepositHibernateDao so that Hibernate ORM can be used for database interaction. This
shows that if a dependent class refers to the concrete implementation class of
the dependency, then substituting a different implementation requires changes
in the dependent class.

Let’s now
look at a scenario in which a dependent class contains reference to the
interface implemented by the dependency.

Scenario:
Dependent class contains reference to the interface implemented by the dependency

We know
that a Java interface defines a contract to which the implementation classes
conform. So, if a class depends on the interface implemented by the dependency,
no change is required in the class if a different implementation of the
dependency is substituted. The application design approach in which a class
depends on the interface implemented by the dependency is referred to as ‘programming
to interfaces’. The interface implemented by the dependency class is referred
to as a dependency
interface.

As it is a
good design practice to ‘program to interfaces’ than to ‘program to classes’,
the following class diagram shows that it is a good design if ABean class
depends on BBean interface and not on BBeanImpl class that implements BBean interface:

Figure 2-1 - ‘Program
to interfaces’ is a good design practice than to ‘program to classes’

The
following class diagram shows how FixedDepositService class can make
use of ‘programming to interfaces’ design approach to easily switch the
strategy used for database interaction:

Figure
2-2 – The FixedDepositService depends on FixedDepositDao interface, which is implemented by FixedDepositJdbcDao and FixedDepositHibernateDao classes.

The above
figure shows that the FixedDepositService class is not directly dependent on the FixedDepositJdbcDao or FixedDepositHibernateDao
class. Instead, FixedDepositService depends on the FixedDepositDao interface (the dependency interface) implemented by FixedDepositJdbcDao and FixedDepositHibernateDao
classes. Now, depending on whether you want to
use plain JDBC or Hibernate ORM framework, you supply an instance of FixedDepositJdbcDao or FixedDepositHibernateDao to the FixedDepositService instance.

As FixedDepositService depends on FixedDepositDao interface, you can support other database interaction strategies in
the future. Let’s say that you decide to use iBATIS (now renamed to MyBatis)
persistence framework for database interaction. You can use iBATIS without
making any changes to FixedDepositService class by simply creating a new FixedDepositIbatisDao class that
implements FixedDepositDao interface, and supplying an instance of FixedDepositIbatisDao to the FixedDepositService instance.

So far we
have seen that ‘programming to interfaces’ design approach results in loose
coupling between a dependent class and its dependencies. Let’s now look at how
this design approach improves testability of the dependent classes.

Improved
testability of dependent classes

In figure
2-2, we saw that the FixedDepositService class holds reference to the FixedDepositDao interface. FixedDepositJdbcDao and FixedDepositHibernateDao are concrete implementation classes of FixedDepositDao interface. Now, to simplify unit testing of FixedDepositService class, you can substitute a mock implementation of FixedDepositDao interface that doesn’t require a database.

If the FixedDepositService class had direct reference to FixedDepositJdbcDao or FixedDepositHibernateDao class, testing FixedDepositService class would have required setting up a database for testing
purposes. This shows that by using a mock implementation of dependency
interface, you can save the effort to setup the infrastructure for unit testing
your dependent classes.

Let’s now
see how Spring supports ‘programming to interfaces’ design approach in
applications.

Spring’s
support for ‘programming to interfaces’ design approach

To use ‘programming
to interfaces’ design approach in your Spring application, you need to ensure
the following things:

§ the <bean>
elements in the configuration metadata specify the concrete classes of the
dependency

§ the dependent
bean classes refer to the dependency interface instead of the concrete class of
the dependency

Let’s now
look at the modified MyBank application that uses ‘programming to interfaces’
design approach.

IMPORT chapter 2/ch02-bankapp-interfaces (This project shows how ‘programming to
interfaces’ design approach is used in creating Spring
applications. To run the application, execute the main method of
the BankApp class of this project)

MyBank application
that uses ‘programming to interfaces’ design approach

The
following class diagram depicts the modified MyBank application that uses ‘programming
to interfaces’ design approach:

Figure 2-3 - MyBank application that uses ‘program to interfaces’ design
approach

The above
figure shows that a dependent class depends on the interface implemented by the
dependency, and not on the concrete implementation class of the dependency. For
instance, the FixedDepositControllerImpl class depends on the FixedDepositService interface, and
the FixedDepositServiceImpl class depends on the FixedDepositDao interface.

The
following example listing shows the FixedDepositServiceImpl class based on
the design shown in figure 2-3:

Example listing 2-2 – FixedDepositService class

Project
– ch02-bankapp-interfaces

Source location - src/main/java/sample/spring/chapter02/bankapp

package sample.spring.chapter02.bankapp;

public class FixedDepositServiceImpl implements FixedDepositService
{

 private FixedDepositDao fixedDepositDao;

 public void setFixedDepositDao(FixedDepositDao fixedDepositDao)
{

 this.fixedDepositDao = fixedDepositDao;

 }

 public FixedDepositDetails getFixedDepositDetails(long id)
{

 return fixedDepositDao.getFixedDepositDetails(id);

 }

 public boolean createFixedDeposit(FixedDepositDetails fdd)
{

 return fixedDepositDao.createFixedDeposit(fdd);

 }

}

The above
example listing shows that the FixedDepositServiceImpl class contains reference to the FixedDepositDao interface. The FixedDepositDao implementation that you want to inject into the FixedDepositServiceImpl instance is specified in the application context XML file. As shown
in figure 2-3, you can inject any one of the following concrete implementations
of FixedDepositDao interface: FixedDepositIbatisDao, FixedDepositJdbcDao and FixedDepositHibernateDao.

The
following example listing shows the applicationContext.xml file that caters to the design shown in figure 2-3:

Example listing 2-3 – applicationContext.xml - MyBank’s application context XML file

Project
– ch02-bankapp-interfaces

Source location -
src/main/resources/META-INF/spring

<?xml version="1.0"
encoding="UTF-8" standalone="no"?>

<beans>

 <bean id="controller"

class="sample.spring.chapter02.bankapp.controller.FixedDepositControllerImpl">

 <property name="fixedDepositService"
ref="service" />

 </bean>

 <bean id="service" class="sample.spring.chapter02.bankapp.service.FixedDepositServiceImpl">

<property name="fixedDepositDao"
ref="dao" />

 </bean>

 <bean id="dao" class="sample.spring.chapter02.bankapp.dao.FixedDepositHibernateDao"/>

</beans>

The above applicationContext.xml file shows that an instance of FixedDepositHibernateDao (an
implementation of FixedDepositDao interface) is injected into FixedDepositServiceImpl. Now, if you
decide to use iBATIS instead of Hibernate for persistence, then all you need to
do is to change the class attribute of the dao bean definition in the applicationContext.xml file to refer
to the fully-qualified name of the FixedDepositIbatisDao class.

Let’s now
look at different ways in which Spring container can instantiate beans.

2-3 Different
approaches to instantiating Spring beans

So far we
have seen bean definition examples that instruct Spring container to create
bean instances by invoking the no-argument constructor of
the bean class. Consider the following bean definition:

<bean id=”myBean” class=”mypackage.MyBean”/>

In the
above bean definition, MyBean class represents a POJO class that defines a no-argument
constructor. MyBean class doesn’t implement any Spring-specific interface or extend
from any Spring-specific class. This effectively means that the Spring
container can create and manage instance of any class that provides a
no-argument constructor.

NOTE
It is important to note that the Spring container can create and manage
instance of any class, irrespective of whether the class provides a no-argument
constructor or not. In section 2-4, we’ll look at bean definitions in which the
constructor of the bean class accepts one or more arguments.

If you
have an existing project that uses factory classes to create object instances,
you can still use Spring container to manage objects created by these
factories. Let’s now look at how Spring container invokes a static or an instance factory method of a class to manage the returned object instance.

Instantiating
beans via static factory methods

In figure
2-3, we saw that the FixedDepositDao interface is implemented by FixedDepositHibernateDao, FixedDepositIbatisDao and FixedDepositJdbcDao classes. The following example listing shows a FixedDepositDaoFactory class that defines a static factory method for
creating and returning an instance of FixedDepositDao based on the argument
passed to the static method:

Example listing 2-4 – FixedDepositDaoFactory class

public class FixedDepositDaoFactory {

 private FixedDepositDaoFactory() { }

 public static FixedDepositDao
getFixedDepositDao(String daoType) {

 FixedDepositDao fixedDepositDao =
null;

if("jdbc".equalsIgnoreCase(daoType)) {

 fixedDepositDao = new
FixedDepositJdbcDao();

 }

if("hibernate".equalsIgnoreCase(daoType)) {

 fixedDepositDao = new FixedDepositHibernateDao();

 }

 return fixedDepositDao;

 }

}

The above
example listing shows that the FixedDepositDaoFactory class defines a getFixedDepositDao
static method that creates and returns an instance of FixedDepositJdbcDao, FixedDepositHibernateDao
or FixedDepositIbatisDao class,
depending on the value of the daoType argument.

The
following bean definition for the FixedDepositDaoFactory class
instructs Spring container to invoke FixedDepositDaoFactory’s getFixedDepositDao method to obtain an instance of FixedDepositJdbcDao class:

Example listing 2-5 – Bean definition for the FixedDepositDaoFactory class

<bean id="dao" class="sample.spring.FixedDepositDaoFactory"

 factory-method="getFixedDepositDao">

 <constructor-arg index=”0”
value="jdbc"/>

</bean>

In the
above bean definition, class attribute specifies the fully-qualified name of the class that
defines the static factory method. The factory-method
attribute specifies the name of the static factory method that the Spring container invokes to obtain an
instance of FixedDepositDao object. The <constructor-arg> element is defined in Spring’s beans schema and is used for passing arguments to
constructors, and static and instance factory methods. The index attribute refers to the
location of the argument in the constructor, or in the static or instance factory method. In the above bean definition, the value 0 of index attribute
means that the <constructor-arg> element is supplying value for the first argument, which is daoType, of
the getFixedDepositDao factory method. The value attribute specifies the argument value. If a factory method accepts
multiple arguments, you need to define a <constructor-arg> element for
each of the arguments.

It is
important to note that calling ApplicationContext’s getBean method to obtain dao bean (refer example listing 2-5) will result
in invocation of the FixedDepositDaoFactory’s getFixedDepositDao factory method.
This means that calling getBean("dao") returns the FixedDepositDao instance created by the getFixedDepositDao factory method,
and not an instance of FixedDepositDaoFactory class.

Now, that
we have seen the configuration of the factory class that creates an instance of
FixedDepositDao, the following example listing shows how to inject an instance of FixedDepositDao into FixedDepositServiceImpl class:

Example listing 2-6 – Injecting object instances created by static factory method

<bean id="service"
class="sample.spring.chapter02.bankapp.FixedDepositServiceImpl">

 <property
name=“fixedDepositDao" ref="dao" />

</bean>

<bean id="dao"
class="sample.spring.chapter02.basicapp.FixedDepositDaoFactory"

factory-method="getFixedDepositDao">

 <constructor-arg index=”0”
value="jdbc"/>

</bean>

In the
above example listing, <property> element injects an instance of FixedDepositDao returned by FixedDepositDaoFactory’s getFixedDepositDao factory method into FixedDepositServiceImpl instance. If you compare the bean definition for the FixedDepositServiceImpl class
shown above with the one shown in example listing 2-3,
you’ll notice that they are exactly the same. This shows that the bean
dependencies are specified the same way irrespective of how (using no-argument
constructor or static factory method) the Spring container creates bean instances.

Let’s now
look at how Spring container instantiate beans by invoking an instance factory method.

Instantiating
beans via instance factory methods

The
following example listing shows the FixedDepositDaoFactory class that
defines an instance factory method for creating and returning an instance of FixedDepositDao:

Example listing 2-7 – FixedDepositDaoFactory class

public class FixedDepositDaoFactory {

 public FixedDepositDaoFactory() {

 }

 public FixedDepositDao
getFixedDepositDao(String daoType) {

 FixedDepositDao FixedDepositDao =
null;

if("jdbc".equalsIgnoreCase(daoType)) {

 FixedDepositDao = new
FixedDepositJdbcDao();

 }

if(“hibernate”.equalsIgnoreCase(daoType)) {

 FixedDepositDao = new
FixedDepositHiberateDao();

 }

 return fixedDepositDao;

 }

}

If a class
defines an instance factory method, the class must define a public
constructor so that the Spring container can create an instance of that class.
In the above example listing, the FixedDepositDaoFactory class defines
a public no-argument constructor. The FixedDepositDaoFactory’s getFixedDepositDao method is an instance factory method that creates and returns an instance of FixedDepositDao.

The
following example listing shows how to instruct Spring container to invoke FixedDepositDaoFactory’s getFixedDepositDao method to obtain an instance of FixedDepositDao:

Example listing 2-8 – Configuration to invoke FixedDepositDaoFactory’s getFixedDepositDao method

<bean id="daoFactory"
class="sample.spring.chapter02.basicapp.FixedDepositDaoFactory" />

<bean id="dao" factory-bean="daoFactory"
factory-method="getFixedDepositDao">

 <constructor-arg
index="0" value="jdbc"/>

</bean>

<bean id="service"
class="sample.spring.chapter02.bankapp.FixedDepositServiceImpl">

 <property
name=“fixedDepositDao" ref="dao" />

</bean>

The above
example listing shows that the FixedDepositDaoFactory class (a class that contains instance
factory method) is configured like a regular Spring bean, and a separate <bean>
element is used to configure the instance factory method
details. To configure details of an instance
factory method, factory-bean and factory-method attributes of
<bean> element are used. The factory-bean
attribute refers to the bean that defines the instance
factory method, and the factory-method attribute specifies the name of the instance
factory method. In the above example listing, <property> element injects an
instance of FixedDepositDao returned by FixedDepositDaoFactory’s getFixedDepositDao factory method into FixedDepositServiceImpl instance.

As with static factory methods, you can pass arguments to instance factory methods using <constructor-arg> element. It
is important to note that invoking ApplicationContext’s getBean method
to obtain dao bean in the above example listing will result in invocation of the FixedDepositDaoFactory’s getFixedDepositDao factory method.

So far we
have looked at bean definition examples in which dependencies are injected into
beans via setter methods. Let’s now look at different DI mechanisms that you
can use for injecting dependencies.

2-4
Dependency injection techniques

In Spring,
dependency injection is performed by passing arguments to a bean’s constructor
and setter methods. If you are using a static
or instance factory method to create bean instances, you can pass bean dependencies
to the factory method or you can set them on the bean instance returned by the
factory method.

We’ll now
look at examples that demonstrate different DI techniques.

Setter-based DI

So far in
this book, we’ve seen examples of setter-based DI. In setter-based DI, <property> elements are used to specify bean dependencies. The <property> element is also used to pass configuration information (if any) required by the bean.

Let’s say
that the MyBank application contains a PersonalBankingService service that
allows customers to retrieve bank account statement, check bank account
details, update contact number, change password, and contact customer service.
The PersonalBankingService class uses JmsMessageSender
(for sending JMS messages), EmailMessageSender (for sending emails) and WebServiceInvoker (for invoking
external web services) objects to accomplish it’s intended functionality. The
following example listing shows the PersonalBankingService class:

Example listing 2-9 – PersonalBankingService class

public class PersonalBankingService {

 private JmsMessageSender
jmsMessageSender;

 private EmailMessageSender
emailMessageSender;

 private WebServiceInvoker
webServiceInvoker;

 public void setJmsMessageSender(JmsMessageSender
jmsMessageSender) {

 this.jmsMessageSender =
jmsMessageSender;

 }

 public void
setEmailMessageSender(EmailMessageSender emailMessageSender) {

 this.emailMessageSender =
emailMessageSender;

 }

 public void
setWebServiceInvoker(WebServiceInvoker webServiceInvoker) {

 this.webServiceInvoker =
webServiceInvoker;

 }

}

The above
example listing shows that a setter method is defined for JmsMessageSender, EmailMessageSender and WebServiceInvoker dependencies of PersonalBankingService class.

We can use
setter-based DI to inject the dependencies of the PersonalBankingService class, as shown here:

Example listing 2-10 – Bean definitions for PersonalBankingService class and its dependencies

 <bean
id="personalBankingService"
class="PersonalBankingService">

 <property
name="emailMessageSender" ref="emailMessageSender" />

 <property
name="jmsMessageSender" ref="jmsMessageSender" />

 <property
name="webServiceInvoker" ref="webServiceInvoker" />

 </bean>

 <bean
id="jmsMessageSender" class="JmsMessageSender">

 </bean>

 <bean
id="webServiceInvoker" class="WebServiceInvoker" />

 </bean>

 <bean id="emailMessageSender"
class="EmailMessageSender" />

 </bean>

The personalBankingService bean definition shows that a <property> element is specified
for each dependency of PersonalBankingService class.

PersonalBankingService uses EmailMessageSender bean to send an email notification to the customer’s email address
in case customer changes his contact number. EmailMessageSender requires email
server address, and username and password for authenticating with the email
server. The following example listing shows that the <property> element can also be used for setting bean properties of type String:

Example listing 2-11 EmailMessageSender class and the corresponding bean definition

public class EmailMessageSender {

 private String host;

 private String username;

 private String password;

 public void setHost(String host) {

 this.host = host;

 }

 public void setUsername(String
username) {

 this.username = username;

 }

 public void setPassword(String
password) {

 this.password = password;

 }

}

 <bean
id="emailMessageSender" class="EmailMessageSender">

 <property name="host"
value="smtp.gmail.com"/>

 <property
name="username" value="myusername"/>

 <property
name="password" value="mypassword"/>

 </bean>

The above
example listing shows that <property> elements have been used to set host, username and password
properties of EmailMessageSender bean. The value attribute specifies the String value to be set for the bean
property identified by the name attribute. The host, username and password properties represent configuration information required by EmailMessageSender bean. In chapter 3, we’ll see how the <property> element is used to set primitive type (like int, long, and so
on), collection type (like java.util.List, java.util.Map, and so on) and custom type (like Address) properties.

Setter-based
DI is also used to inject dependencies into beans created by static and instance factory methods. Let’s look at how to use setter-based DI in
conjunction with static and instance factory methods.

Injecting
dependencies into bean instances created by factory methods

You can
use setter-based DI to inject dependencies of the bean instance returned by a static or instance factory method.

Consider
the following FixedDepositJdbcDao class that defines a databaseInfo property:

Example listing 2-12 – FixedDepositJdbcDao class

public class FixedDepositJdbcDao {

 private DatabaseInfo databaseInfo;

 public FixedDepositJdbcDao() { }

 public void setDatabaseInfo(DatabaseInfo
databaseInfo) {

 this. databaseInfo = databaseInfo;

 }

}

In the
above example listing, the databaseInfo attribute represents a dependency of the FixedDepositJdbcDao class that is fulfilled by setDatabaseInfo method.

The
following FixedDepositDaoFactory class defines a factory method responsible for creating and
returning an instance of FixedDepositDaoJdbc class:

Example listing 2-13 – FixedDepositDaoFactory class

public class FixedDepositDaoFactory {

 public FixedDepositDaoFactory() {

 }

 public FixedDepositDao
getFixedDepositDao(String daoType) {

 FixedDepositDao FixedDepositDao =
null;

if("jdbc".equalsIgnoreCase(daoType)) {

 FixedDepositDao = new
FixedDepositJdbcDao();

 }

if(“hibernate”.equalsIgnoreCase(daoType)) {

 FixedDepositDao = new
FixedDepositHiberateDao();

 }

 return fixedDepositDao;

 }

}

In the
above example listing, the getFixedDepositDao method is an instance factory method for creating FixedDepositDao instances. The getFixedDepositDao method creates an instance of FixedDepositJdbcDao instance if the
value of daoType argument is jdbc. It is important to note that the getFixedDepositDao method doesn’t set
the databaseInfo property of the FixedDepositJdbcDao instance.

As we saw
in example listing 2-8, the following bean definitions instruct Spring container
to create an instance of FixedDepositJdbcDao by invoking the getFixedDepositDao instance factory method of FixedDepositDaoFactory class:

Example listing 2-14 – Configuration to invoke FixedDepositDaoFactory’s getFixedDepositDao method

<bean id="daoFactory"
class="FixedDepositDaoFactory" />

<bean id="dao"
factory-bean="daoFactory"
factory-method="getFixedDepositDao">

 <constructor-arg
index="0" value="jdbc"/>

</bean>

The dao bean
definition results in invocation of FixedDepositDaoFactory’s getFixedDepositDao method, which creates and returns an instance of FixedDepositJdbcDao. But, the FixedDepositJdbcDao’s databaseInfo property is not set. To set the databaseInfo dependency, you can
perform setter-based DI on the FixedDepositJdbcDao instance returned by the getFixedDepositDao method, as shown
here:

Example listing 2-15 –
Configuration to invoke FixedDepositDaoFactory’s getFixedDepositDao method and set databaseInfo
property of returned FixedDepositJdbcDao instance

<bean id="daoFactory"
class="FixedDepositDaoFactory" />

<bean id="dao"
factory-bean="daoFactory"
factory-method="getFixedDepositDao">

 <constructor-arg
index="0" value="jdbc"/>

 <property
name="databaseInfo" ref="databaseInfo"/>

</bean>

<bean id="databaseInfo"
class="DatabaseInfo" />

The above
bean definition shows that <property> element is used to set databaseInfo property of FixedDepositJdbcDao instance returned by getFixedDepositDao instance factory method. As with the instance
factory method, you can use the <property> element to inject dependencies into the bean instance returned by
the static factory method.

Let’s now
look at how to inject bean dependencies via constructor arguments.

Constructor-based
DI

In constructor-based
DI, dependencies of a bean are passed as arguments to the bean class’s
constructor. For instance, the following example listing shows PersonalBankingService class whose constructor accepts JmsMessageSender, EmailMessageSender and WebServiceInvoker objects:

Example listing 2-16 – PersonalBankingService class

public class PersonalBankingService {

 private JmsMessageSender
jmsMessageSender;

 private EmailMessageSender
emailMessageSender;

 private WebServiceInvoker
webServiceInvoker;

 public
PersonalBankingService(JmsMessageSender jmsMessageSender,

 EmailMessageSender
emailMessageSender,

 WebServiceInvoker webServiceInvoker)
{

 this.jmsMessageSender = jmsMessageSender;

 this.emailMessageSender =
emailMessageSender;

 this.webServiceInvoker =
webServiceInvoker;

 }

}

The
arguments to the PersonalBankingService’s constructor represent dependencies of the PersonalBankingService class. The following example listing shows how dependencies of PersonalBankingService instance are supplied via <constructor-arg> elements:

Example listing 2-17 – PersonalBankingService bean definition

 <bean id="personalBankingService"
class="PersonalBankingService">

 <constructor-arg
index="0" ref="jmsMessageSender" />

 <constructor-arg
index="1" ref="emailMessageSender" />

 <constructor-arg
index="2" ref="webServiceInvoker" />

 </bean>

 <bean
id="jmsMessageSender" class="JmsMessageSender">

 </bean>

 <bean
id="webServiceInvoker" class="WebServiceInvoker" />

 </bean>

 <bean
id="emailMessageSender" class="EmailMessageSender" />

 </bean>

In the
above example listing, <constructor-arg> elements specify details of the constructor arguments passed to the
PersonalBankingService instance. The index attribute specifies the index of the constructor argument. If the index
attribute value is 0, it means that the <constructor-arg> element corresponds to the first constructor argument, and if the
index attribute value is 1, it means that the <constructor-arg> element corresponds to the second constructor argument, and so on.
We saw earlier that ref attribute of <property> element is used for passing reference to a bean. Similarly, ref attribute
of <constructor-arg> element is used for passing reference to a bean. Like the <property> element, the <constructor-arg> element is
also used to pass configuration
information (if any) required by the bean.

You should
note that the <constructor-arg> element is
also used for passing arguments to static and instance factory methods that create bean instances (refer section 2-3).

NOTE
Instead of using ref
attribute of <property> and <constructor-arg> elements, you can use <ref> element inside the <property> and <constructor-arg> elements to set reference to beans. The ref attribute is preferred as it makes the XML less
verbose.

The
following example listing shows the EmailMessageSender class and the
corresponding bean definition that demonstrates use of <constructor-arg> elements to supply values for String type constructor arguments:

Example listing 2-18 EmailMessageSender class and the corresponding bean definition

public class EmailMessageSender {

 private String host;

 private String username;

 private String password;

 public EmailMessageSender(String host,
String username, String password) {

 this.host = host;

 this.username = username;

 this.password = password;

 }

}

 <bean
id="emailMessageSender" class="EmailMessageSender">

 <constructor-arg
index="0" value="smtp.gmail.com"/>

 <constructor-arg
index="1" value="myusername"/>

 <constructor-arg
index="2" value="mypassword"/>

 </bean>

So far we
have seen that <constructor-arg> element is used for injecting bean dependencies and passing values
for String type constructor arguments. In chapter 3, we’ll see how the <constructor-arg> element is used to set primitive type (like int, long, and so
on), collection type (like java.util.List, java.util.Map, and so on) and custom type (like Address) properties.

Let’s now
look at how we can use constructor-based DI along with setter-based DI.

Using a mix of
constructor- and setter-based DI mechanisms

If a bean
class requires both constructor- and setter-based DI mechanisms, you can use a
combination of <constructor-arg> and <property> elements to inject dependencies.

The
following example listing shows a bean class whose dependencies are injected as
arguments to constructor and setter methods:

Example listing 2-19 – PersonalBankingService class

public class PersonalBankingService {

 private JmsMessageSender
jmsMessageSender;

 private EmailMessageSender
emailMessageSender;

 private WebServiceInvoker
webServiceInvoker;

 public
PersonalBankingService(JmsMessageSender jmsMessageSender,

 EmailMessageSender
emailMessageSender) {

 this.jmsMessageSender =
jmsMessageSender;

 this.emailMessageSender =
emailMessageSender;

 }

 public void
setWebServiceInvoker(WebServiceInvoker webServiceInvoker) {

 this.webServiceInvoker =
webServiceInvoker;

 }

}

In the PersonalBankingService class, jmsMessageSender
and emailMessageSender dependencies are
injected as constructor arguments, and webServiceInvoker dependency is
injected via the setWebServiceInvoker setter method. The following bean definition shows that both <constructor-arg> and <property> elements are used to inject dependencies of PersonalBankingService class:

Example listing 2-20 – Mixing constructor- and setter-based DI mechanisms

 <bean id="dataSource"
class="PersonalBankingService">

 <constructor-arg
index="0" ref="jmsMessageSender" />

 <constructor-arg
index="1" ref="emailMessageSender" />

 <property
name="webServiceInvoker" ref="webServiceInvoker" />

 </bean>

Now, that
we have seen how to instruct Spring container to create beans and perform DI,
let’s look at different scopes that you can specify for beans.

2-5 Bean
scopes

You may
want to specify the scope of a bean to control whether a shared instance of the
bean is created (singleton scope), or a new bean instance is created every time the bean is
requested (prototype scope) from the Spring container. The scope of a bean is defined by
the scope attribute of the <bean> element. If the scope attribute is not specified, it means that the bean is a
singleton-scoped bean.

NOTE In web application scenarios, Spring allows you to specify additional scopes: request, session and globalSession. These scopes determine the lifetime of the bean instance. For instance, a request-scoped bean’s
lifetime is limited to a single HTTP request. As in this chapter we’ll not be discussing Spring Web
MVC or Spring Portlet MVC, we’ll restrict the discussion to singleton and prototype scopes. The request, session and globalSession scopes are described in chapter 10.

IMPORT chapter 2/ch02-bankapp-scopes (This project shows usage of singleton and prototype bean
scopes. To run the application, execute the main method of the BankApp class
of this project. The project also contains 2 JUnit tests, PrototypeTest
and SingletonTest that you can execute)

Singleton

The singleton
scope is the default scope for all the beans defined in the application context XML file.
Instance of a singleton-scoped bean is created when the Spring container is
created, and is destroyed when the Spring container is destroyed. Spring
container creates a single instance of a singleton-scoped bean, which is shared by all the beans that depend on it.

The
following example listing shows the applicationContext.xml file of ch02-bankapp-scopes project in which all the beans are singleton-scoped:

Example listing 2-21 – applicationContext.xml - Singleton-scoped beans

Project
– ch02-bankapp-scopes

Source location -
src/main/resources/META-INF/spring

<beans >

 <bean id="controller"

 class="sample.spring.chapter02.bankapp.controller.FixedDepositControllerImpl">

 <property
name=“fixedDepositService" ref="service" />

 </bean>

 <bean id="service"

 class="sample.spring.chapter02.bankapp.service.FixedDepositServiceImpl">

 <property
name=“fixedDepositDao" ref="dao" />

 </bean>

 <bean id="dao"
class="sample.spring.chapter02.bankapp.dao.FixedDepositDaoImpl" />

</beans>

In the
above applicationContext.xml file, controller, service and dao beans are singleton-scoped because no scope
attribute is specified for the <bean> elements. This means that only a single instance of FixedDepositControllerImpl, FixedDepositServiceImpl and FixedDepositDaoImpl classes is created by the Spring container. As these beans are
singleton-scoped, Spring container returns the same instance of the bean every
time we retrieve one of these beans using ApplicationContext’s getBean
method.

NOTE
If the scope attribute is not specified or the value of scope attribute is singleton, it means that the bean is singleton-scoped.

The
following example listing shows the testInstances method of SingletonTest
(a JUnit test class) class of ch02-bankapp-scopes project. The testInstances method tests whether multiple invocation of ApplicationContext’s getBean method returns the same or different instance of the controller
bean:

Example listing 2-22 – SingletonTest JUnit test class

Project
– ch02-bankapp-scopes

Source location -
src/test/java/sample/spring/chapter02/bankapp

package sample.spring.chapter02.bankapp;

import static org.junit.Assert.assertSame;

import org.junit.BeforeClass;

import org.junit.Test;

import
sample.spring.chapter02.bankapp.controller.FixedDepositController;

public class SingletonTest {

 private static ApplicationContext
context;

 @BeforeClass

 public static void init() {

 context = new
ClassPathXmlApplicationContext(

"classpath:META-INF/spring/applicationContext.xml");

 }

 @Test

 public void testInstances() {

 FixedDepositController controller1
= (FixedDepositController) context.getBean("controller");

 FixedDepositController controller2
= (FixedDepositController) context.getBean("controller");

 assertSame("Different
FixedDepositController instances", controller1, controller2);

 }

}

In the
above example listing, JUnit’s @BeforeClass annotation specifies that the init method is invoked before any of
the test methods (that is, methods annotated with JUnit’s @Test
annotation) in the class. This means that @BeforeClass annotated method is
invoked only once, and @Test annotated methods are executed only after
the execution of @BeforeClass annotated method. Note that the init method is a static method. The init method creates an instance of ApplicationContext object by passing
the configuration metadata (shown in example listing 2-21) to the ClassPathXmlApplicationContext’s constructor. The testInstances
method obtains 2 instances of controller bean and checks whether both the instances are the same by using
JUnit’s assertSame assertion. As the controller bean is singleton-scoped, controller1 and controller2
bean instances are the same. For this reason, SingletonTest’s testInstances
test executes without any assertion errors.

The
following figure shows that the Spring container returns the same instance of controller
bean when you call the ApplicationContext’s getBean method multiple times:

Figure 2-4 Multiple requests for a singleton-scoped bean results in the same
bean instance returned by the Spring container

The above
figure shows that multiple calls to obtain controller bean returns the same instance of the controller bean.

NOTE
In figure 2-4, the controller
bean instance is represented by a 2-compartment rectangle. The top compartment
shows the name of the bean
(that is, the value of the id
attribute of the <bean> element) and the bottom compartment shows the type of the bean (that is, the value of the class attribute of the <bean> element). In the rest of this book, we’ll use this
convention to show bean instances inside a Spring container.

A
singleton-scoped bean instance is shared amongst the beans that depend on it.
The following example listing shows the testReference method of SingletonTest
JUnit test class that checks if the FixedDepositDao instance referenced
by the FixedDepositController instance is the same as the one obtained directly by calling getBean method
of ApplicationContext:

Example listing 2-23 – testReference method of SingletonTest JUnit test class

Project
– ch02-bankapp-scopes

Source location -
src/test/java/sample/spring/chapter02/bankapp

package sample.spring.chapter02.bankapp;

import static org.junit.Assert.assertSame;

import org.junit.Test;

public class SingletonTest {

 private static ApplicationContext
context;

 @Test

 public void testReference() {

 FixedDepositController controller =
(FixedDepositController) context.getBean("controller");

 FixedDepositDao fixedDepositDao1 =

controller.getFixedDepositService().getFixedDepositDao();

 FixedDepositDao fixedDepositDao2 =
(FixedDepositDao) context.getBean("dao");

 assertSame("Different
FixedDepositDao instances", fixedDepositDao1, fixedDepositDao2);

 }

}

In the
above example listing, the testReference method first retrieves the FixedDepositDao instance (refer fixedDepositDao1 variable in the above example listing) referenced by the FixedDepositController bean, followed by directly retrieving another instance of FixedDepositDao bean (refer fixedDepositDao2 variable in the above example listing) using ApplicationContext’s getBean method. If you execute the testReference test, you’ll see that
the test completes successfully because the fixedDepositDao1 and fixedDepositDao2 instances are the same.

Figure 2-5
shows that the FixedDepositDao instance referenced by FixedDepositController instance is
the same as the one returned by invoking getBean("dao") method on ApplicationContext.

Figure 2-5 Singleton-scoped bean
instance is shared between beans that depend on it

The above
figure shows that the FixedDepositDao instance referenced by FixedDepositController bean instance
and the one retrieved directly by calling ApplicationContext’s getBean are
same. If there are multiple beans dependent on a singleton-scoped bean, then
all the dependent beans share the same singleton-scoped bean instance.

Let’s now
look at whether or not the same singleton-scoped bean instance is shared
between multiple Spring container instances.

Singleton-scoped
beans and multiple Spring container instances

The scope
of a singleton-scoped bean instance is limited to the Spring container
instance. This means that if you create 2 instances of the Spring container
using the same configuration metadata, each Spring container has its own
instances of the singleton-scoped beans.

The
following example listing shows the testSingletonScope method of SingletonTest
class, which tests whether the FixedDepositController bean instance retrieved from two different Spring container
instances are same or different:

Example listing 2-24 – testSingletonScope method of SingletonTest JUnit test class

Project
– ch02-bankapp-scopes

Source location - src/test/java/sample/spring/chapter02/bankapp

package sample.spring.chapter02.bankapp;

import static org.junit.Assert.assertNotSame;

public class SingletonTest {

 private static ApplicationContext
context;

 @BeforeClass

 public static void init() {

 context = new
ClassPathXmlApplicationContext(

"classpath:META-INF/spring/applicationContext.xml");

 }

 @Test

 public void testSingletonScope() {

 ApplicationContext anotherContext =
new ClassPathXmlApplicationContext(

"classpath:META-INF/spring/applicationContext.xml");

 FixedDepositController fixedDepositController1
= (FixedDepositController) anotherContext

.getBean("controller");

 FixedDepositController fixedDepositController2
=

 (FixedDepositController)
context .getBean("controller");

 assertNotSame("Same
FixedDepositController instances",

 fixedDepositController1,
fixedDepositController2);

 }

}

The SingletonTest’s
init method (annotated with JUnit’s @BeforeClass annotation) creates an
instance of ApplicationContext (identified by context variable) before any @Test annotated method is executed.
The testSingletonScope method creates one more instance of Spring container (identified by
anotherContext variable) using the same applicationContext.xml file. An
instance of FixedDepositController bean is retrieved from both the Spring containers and checked if
they are not the same. If you execute the testSingletonScope test, you’ll find
that the test completes successfully because the FixedDepositController bean instance
retrieved from context instance is different from the one retrieved from anotherContext
instance.

The
following figure depicts the behavior exhibited by the testSingletonScope method:

Figure 2-6 Each Spring container creates its own instance of a
singleton-scoped bean

The above
figure shows that each Spring container creates its own instance of controller
bean. This is the reason why context and anotherContext instances return different instances of controller bean
when you call getBean("controller") method.

The testSingletonScope method showed that each Spring container creates its own instance
of a singleton-scoped bean. It is important to note
that Spring container creates an instance of a singleton-scoped bean for each bean definition. The following example listing shows multiple bean
definitions for the FixedDepositDaoImpl class:

Example listing 2-25 – applicationContext.xml - Multiple bean definitions for the same class

Project
– ch02-bankapp-scopes

Source location - src/main/resources/META-INF/spring

 <bean id="dao"
class="sample.spring.chapter02.bankapp.dao.FixedDepositDaoImpl" />

 <bean id="anotherDao"

 class="sample.spring.chapter02.bankapp.dao.FixedDepositDaoImpl"
/>

The bean
definitions shown in the above example listing are for FixedDepositDaoImpl class. As scope attribute is not specified, bean definitions shown in the above example listing
represent singleton-scoped beans. Even if multiple bean definitions are defined
for a class, Spring container creates a bean instance corresponding to each
bean definition. This means that Spring container creates distinct instances of
FixedDepositDaoImpl class corresponding to dao and anotherDao
bean definitions. The following example listing shows SingletonScope’s
testSingletonScopePerBeanDef method that tests whether the FixedDepositDaoImpl instances
corresponding to dao and anotherDao bean definitions are same or different:

Example listing 2-26 – testSingletonScopePerBeanDef method of SingletonTest JUnit test class

Project
– ch02-bankapp-scopes

Source location - src/test/java/sample/spring/chapter02/bankapp

package sample.spring.chapter02.bankapp;

import static
org.junit.Assert.assertNotSame;

public class SingletonTest {

 private static ApplicationContext
context;

 @Test

 public void
testSingletonScopePerBeanDef() {

 FixedDepositDao fixedDepositDao1 =
(FixedDepositDao) context.getBean("dao");

 FixedDepositDao fixedDepositDao2 =
(FixedDepositDao) context.getBean("anotherDao");

 assertNotSame("Same
FixedDepositDao instances", fixedDepositDao1, fixedDepositDao2);

 }

}

In the
above example listing, fixedDepositDao1 and fixedDepositDao2 variables represent instances of FixedDepositDaoImpl class that Spring
container creates corresponding to the dao and anotherDao
bean definitions, respectively. If you execute the testSingleScopePerBeanDef test, it’ll execute without any assertion errors because the fixedDepositDao1 instance (corresponding to dao bean definition) and fixedDepositDao2 instance (corresponding to anotherDao bean definition) are
distinct.

The
following figure summarizes that a singleton-scoped bean is created per bean definition:

Figure 2-7 There is one singleton-scoped bean instance per bean definition

The above
figure shows that there exists one instance of singleton-scoped bean per bean definition in the Spring container.

We mentioned
earlier that a singleton-scoped bean is pre-instantiated by default, which means an instance of a singleton-scoped bean is
created when you create an instance of the Spring container. Let’s now look at
how you can lazily initialize a singleton-scoped bean.

Lazily initializing
a singleton-scoped bean

You can
instruct Spring container to create an instance of a singleton-scoped bean only
when it is requested for the first time. The following lazyExample bean
definition shows how to instruct Spring container to lazy initialize lazyBean bean:

Example listing 2-27 – Lazily initializing a singleton-scoped bean

<bean id="lazyBean"
class="example.LazyBean" lazy-init=”true”/>

The <bean>
element’s lazy-init attribute specifies whether the bean instance is created lazily or
eagerly. If the value is true (as in case of the bean definition shown above), the bean instance
is initialized by the Spring container when it receives the request for the
bean for the first time.

The
following sequence diagram shows how lazy-init attribute affects the
creation of a singleton-scoped bean instance:

Figure 2-8 A lazily-initialized
singleton-scoped bean instance is created when it is requested for the first
time by the application

In the
above diagram, BeanA represents a singleton-scoped bean instance that is not set to be lazily-initialized, and LazyBean represents a
singleton-scoped bean that is set to be lazily-initialized. When the Spring
container instance is created, BeanA
is also instantiated because it is not set to be lazily-initialized. On the other hand, LazyBean is
instantiated when ApplicationContext’s getBean method is invoked for the time first time to retrieve an instance
of LazyBean from the Spring container.

NOTE
You can use <beans> element’s default-lazy-init attribute to specify default initialization strategy for
beans defines in the application context XML file. If the <bean> element’s lazy-init attribute specifies a different value than the <beans> element’s default-lazy-init, the value specified by the lazy-init attribute applies to the bean.

As a
singleton-scoped bean can be lazily-initialized or pre-instantiated by the
Spring container, you may be thinking at this time whether you should define your
singleton-scoped beans to be lazily-initialized or pre-instantiated. In most
application scenarios, it is beneficial to pre-instantiate singleton-scoped
beans to discover configuration issues at the time of creation of the Spring
container. The following example listing shows a aBean singleton-scoped bean that is
set to be lazily-initialized, and that depends on bBean bean:

Example listing 2-28 – A lazily-initialized singleton-scoped bean

public class ABean {

 private BBean bBean;

 public void setBBean(BBean bBean) {

 this.bBean = bBean;

 }

}

<bean id="aBean"
class="ABean" lazy-init="true">

 <property name="bBean"
value="bBean" />

</bean>

<bean id="bBean"
class="BBean" />

In the
above example listing, ABean’s bBean property refers to the BBean bean.
Notice that instead of ref attribute, value attribute of <property> element has been used to set ABean’s bBean
property. If you create an ApplicationContext instance by passing it the XML file containing the above bean definition,
no errors will be reported. But, when you try to fetch the aBean bean by
invoking ApplicationContext’s getBean method, you’ll get the following error message:

Caused
by: java.lang.IllegalStateException: Cannot convert value of type [java.lang.String]
to required type [BBean] for property 'bBean: no matching editors or conversion
strategy found

The above
error message is shown because the Spring container fails to convert the String value
of ABean’s bBean property to BBean type.
This highlights a simple configuration issue in which instead of specifying <bean>
element’s ref attribute, value attribute was specified. If the aBean bean was defined as
pre-instantiated (instead of lazily-initialized), the above configuration issue
could have been caught at the time we created an instance of ApplicationContext, and not when we tried to obtain an instance of aBean bean
from the ApplicationContext.

Let’s now
look at prototype-scoped beans in Spring.

Prototype

A
prototype-scoped bean is different from a singleton-scoped bean in the sense
that the Spring container always returns a new instance
of a prototype-scoped bean. Another distinctive feature of prototype-scoped
beans is that they are always lazily-initialized.

The
following FixedDepositDetails bean in the applicationContext.xml file of ch02-bankapp-scopes project represents a prototype-scoped bean:

Example listing 2-29 – applicationContext.xml - A prototype-scoped bean example

Project
– ch02-bankapp-scopes

Source location - src/main/resources/META-INF/spring

<bean id="FixedDepositDetails"

 class="sample.spring.chapter02.bankapp.domain.FixedDepositDetails"

 scope="prototype" />

The above
example listing shows that the <bean> element’s scope attribute value is set to prototype. This means that the FixedDepositDetails bean is a prototype-scoped bean.

The
following testInstances method of PrototypeTest JUnit test class shows that the 2 instances of FixedDepositDetails bean retrieved from the Spring container are different:

Example listing 2-30 – testInstances method of PrototypeTest JUnit test class

Project
– ch02-bankapp-scopes

Source location - src/test/java/sample/spring/chapter02/bankapp

package sample.spring.chapter02.bankapp;

import static
org.junit.Assert.assertNotSame;

public class PrototypeTest {

 private static ApplicationContext
context;

 @Test

 public void testInstances() {

 FixedDepositDetails fixedDepositDetails1
=

(FixedDepositDetails)context.getBean("fixedDepositDetails");

 FixedDepositDetails fixedDepositDetails2
=

 (FixedDepositDetails)
context.getBean("fixedDepositDetails");

 assertNotSame("Same
FixedDepositDetails instances",

 fixedDepositDetails1, fixedDepositDetails2);

 }

}

If you
execute the testInstances test, it’ll complete without any assertion errors because the 2 FixedDepositDetails instances (fixedDepositDetails1 and fixedDepositDetails2) obtained from the ApplicationContext are different.

Let’s now
look at how to choose the right scope (singleton or prototype) for
a bean.

Choosing the
right scope for your beans

If a bean
doesn’t maintain any conversational state (that is, it is stateless in nature),
it should be defined as a singleton-scoped bean. If a bean maintains
conversational state, it should be defined as a prototype-scoped bean. FixedDepositServiceImpl, FixedDepositDaoImpl and FixedDepositControllerImpl beans of MyBank application are stateless in nature; therefore,
they are defined as singleton-scoped beans. FixedDepositDetails bean (a domain object) of MyBank application maintains conversational state; therefore,
it is defined as a prototype-scoped bean.

NOTE If you are using an ORM framework (like Hibenate or iBATIS) in
your application, the domain objects are created either by the ORM framework or
you create them programmatically in your application code using the new operator. It is because of this reason domain objects are not
defined in the application context XML file if the application uses an ORM
framework for persistence.

2-6 Summary

In this
chapter, we discussed some of the basics of Spring Framework. We looked at
‘programming to interfaces’ design approach, different approaches to create
bean instances, constructor-based DI and bean scopes. In the next chapter,
we’ll look at how to set different types (like int, long, Map, Set, and so on) of bean properties
and constructor arguments.

Chapter 3 - Configuring beans

3-1
Introduction

In previous chapters, we touched upon
some of the basic concepts of Spring Framework. We saw how Spring beans and
their dependencies are specified in the application context XML file. We also
looked at singleton- and prototype-scoped beans, and discussed the implications
of assigning these scopes to beans.

In this chapter, we’ll look at:

§
bean definition inheritance

§
how arguments to a bean class’s constructor are
resolved

§
how to configure bean properties and constructor
arguments of primitive type (like int, float, and so on), collection type
(like java.util.List, java.util.Map, and so on), custom type (like Address), and so on

§
how you can make the application context XML
file less verbose by using p-namespace and c-namespace to specify bean
properties and constructor arguments, respectively

§
Spring’s FactoryBean interface that allows you
to write your own factory class for creating bean instances

3-2 Bean
definition inheritance

We saw in
chapter 1 and 2 that a bean definition in the application context XML file
specifies the fully-qualified name of the bean class and its dependencies. In
some scenarios, to make a bean definition less verbose, you may want a bean
definition to inherit configuration information from another bean definition. Let’s look
at one such scenario in MyBank application.

IMPORT chapter 3/ch03-bankapp-inheritance (This project shows the MyBank application that uses bean definition
inheritance. To run the
application, execute the main method of the BankApp class of this project)

MyBank – Bean
definition inheritance example

In the
previous chapter, we saw that the MyBank application accesses database through
DAOs. Let’s say that the MyBank application defines a DatabaseOperations class that simplifies interacting with the database. So, all the
DAOs in the MyBank application depend on DatabaseOperations class to perform
database operations, as shown in the following figure:

Figure 3-1 - DAO classes in MyBank application make use of DatabaseOperations class to perform database interaction

The above
figure shows that the FixedDepositDao and PersonalBankingDao classes are dependent on the DatabaseOperations class. The
following application context XML file shows the bean definitions for these
classes:

Example listing 3-1 – DAO beans are dependent on DatabaseOperations bean

 <bean id="databaseOperations"

class="sample.spring.chapter01.bankapp.utils.DatabaseOperations"
/>

 <bean
id="personalBankingDao"

 class="sample.spring.chapter01.bankapp.dao.PersonalBankingDaoImpl">

 <property
name="databaseOperations" ref="databaseOperations" />

 </bean>

 <bean id="FixedDepositDao"

class="sample.spring.chapter01.bankapp.dao.FixedDepositDaoImpl">

 <property
name="databaseOperations" ref="databaseOperations" />

 </bean>

Both the personalBankingDao and FixedDepositDao bean definitions use the <property> element to perform
dependency injection of the DatabaseOperations instance. As the name of the property that refers to the DatabaseOperations instance is databaseOperations in both the bean definitions, it implies that both PersonalBankingDaoImpl and FixedDepositDaoImpl classes define a setDatabaseOperations method to allow Spring container to inject DatabaseOperations instance.

If
multiple beans in your application share a common set of configuration
(properties, constructor arguments, and so on), you can create a bean
definition that acts as a parent for other bean definitions. In case of personalBankingDao and fixedDepositDao bean definitions, the common configuration is the databaseOperations property. The following example listing shows that the personalBankingDao and fixedDepositDao bean definitions make use of bean definition inheritance:

Example listing 3-2 – applicationContext.xml - MyBank’s application context XML file

Project
– ch03-bankapp-inheritance

Source location -
src/main/resources/META-INF/spring

 <bean
id="databaseOperations"

 class="sample.spring.chapter03.bankapp.utils.DatabaseOperations"
/>

 <bean id="daoTemplate"
abstract="true">

 <property
name="databaseOperations" ref="databaseOperations" />

 </bean>

 <bean id="FixedDepositDao"
parent="daoTemplate"

 class="sample.spring.chapter03.bankapp.dao.FixedDepositDaoImpl"
/>

 <bean
id="personalBankingDao" parent="daoTemplate"

 class="sample.spring.chapter03.bankapp.dao.PersonalBankingDaoImpl"
/>

In the
above example listing, the daoTemplate bean definition defines the common configuration shared by both the
fixedDepositDao and personalBankingDao bean definitions. As both the fixedDepositDao and personalBankingDao bean definitions require the databaseOperations dependency (refer
example listing 3-1), the daoTemplate bean definition defines the databaseOperations dependency using
the <property> element. The <bean> element’s parent attribute specifies the name of the bean definition from which the
configuration is inherited. As the parent attribute value is daoTemplate
for fixedDepositDao and personalBankingDao bean definitions, they inherit databaseOperations property from the daoTemplate
bean definition. The example listings 3-1 and 3-2 are same, except that the
example listing 3-2 makes use of bean definition inheritance.

If the <bean>
element’s abstract attribute value is set to true, it means that the bean
definition is abstract. It is important to note that the Spring container doesn’t attempt to create a bean corresponding to an abstract bean definition. It is important to note that you can’t define a
bean to be dependent on an abstract bean, that is, you can’t use <property> or <constructor-arg> element to refer to an abstract bean.

In example
listing 3-2, daoTemplate bean definition is abstract. You may have
noticed that the daoTemplate bean definition doesn’t specify the class attribute. If a parent bean
definition doesn’t specify the class attribute, child bean definitions (like the fixedDepositDao and personalBankingDao) specify the class attribute. It is important to note that if you don’t specify the class
attribute, you must define the parent bean definition as abstract so that Spring container doesn’t attempt to create a bean instance
corresponding to it.

To verify
that the fixedDepositDao and personalBankingDao bean definitions inherit daoTemplate bean definition’s databaseOperations property, execute the main method of BankApp class
of ch03-bankapp-inheritance project. BankApp’s main method invokes methods on the fixedDepositDao and personalBankingDao beans; those beans in turn invoke methods on the DatabaseOperations instance. If a DatabaseOperations instance is not injected into the fixedDepositDao and personalBankingDao beans, java.lang.NullPointerException will be thrown.

The
following diagram summarizes how bean definition inheritance works in case of FixedDepositDao and personalBankingDao bean definitions:

Figure 3-2 – Bean definition
inheritance in MyBank application

The above
figure shows that the fixedDepositDao and personalBankingDao bean definitions inherit the databaseOperations property (shown in
italics in the boxes labeled fixedDepositDao and personalBankingDao) from the daoTemplate bean definition. The above figure also depicts that the Spring
container doesn’t attempt to create a bean instance corresponding to the daoTemplate
bean definition because it is marked as abstract.

Let’s now
look at what configuration information gets inherited from the parent bean definition.

What gets
inherited ?

A child
bean definition inherits the following configuration information from the
parent bean definition:

·
properties – specified via <property> elements

·
constructor arguments – specified via <constructor-arg> elements

·
method overrides (discussed in section 4-5 of
chapter 4)

·
initialization and destroy methods (discussed in
chapter 5), and

·
factory methods – specified via factory-method
attribute of <bean> element (refer section 2-3 of chapter 2 to know how static and instance factory methods are used for creating beans)

IMPORT chapter 3/ch03-bankapp-inheritance-example (This project shows the MyBank application that uses bean definition inheritance. In this project, you’ll see
multiple scenarios in which bean definition inheritance is used. To run the
application, execute the main method of the BankApp class of this project)

Let’s now
look at some of the bean definition inheritance examples.

Bean definition
inheritance example – parent bean definition is not abstract

The
following example listing shows a bean inheritance example in which the parent
bean definition is not abstract, and the child bean definitions define an additional
dependency:

Example listing 3-3 – applicationContext.xml - Bean definition inheritance – parent bean definition is not abstract

Project
– ch03-bankapp-inheritance-examples

Source location - src/main/resources/META-INF/spring

 <bean id="serviceTemplate"

 class="sample.spring.chapter03.bankapp.base.ServiceTemplate">

 <property
name="jmsMessageSender" ref="jmsMessageSender" />

 <property
name="emailMessageSender" ref="emailMessageSender" />

 <property
name="webServiceInvoker" ref="webServiceInvoker" />

 </bean>

 <bean id="fixedDepositService"
class=".....FixedDepositServiceImpl"

 parent="serviceTemplate">

 <property
name=“fixedDepositDao" ref="fixedDepositDao" />

 </bean>

 <bean
id="personalBankingService"
class=".....PersonalBankingServiceImpl"

 parent="serviceTemplate">

 <property
name="personalBankingDao" ref="personalBankingDao" />

 </bean>

 <bean
id="userRequestController"
class=".....UserRequestControllerImpl">

 <property
name="serviceTemplate" ref="serviceTemplate" />

 </bean>

A little
background before we delve into the details of the above listed configuration:
a service in the MyBank application may send JMS messages to a
messaging-middleware or send emails to an email server or it may invoke an
external web service. In the above example listing, the jmsMessageSender, emailMessageSender and webServiceInvoker beans simplify these tasks by providing a layer of abstraction. The
serviceTemplate bean provides access to jmsMessageSender, emailMessageSender and webServiceInvoker beans. This is the reason why the serviceTemplate bean is dependent on
the jmsMessageSender, emailMessageSender and webServiceInvoker beans.

Example
listing 3-3 shows that the serviceTemplate bean definition is the parent bean definition of fixedDepositService and personalBankingService bean definitions. Notice that the serviceTemplate bean definition is
not abstract; the class attribute specifies ServiceTemplate as the class. In our previous bean definition inheritance example
(refer example listing 3-2), child bean definitions didn’t define any
properties. In the above example listing, notice that the fixedDepositService and personalBankingService child bean definitions define fixedDepositDao and personalBankingDao properties, respectively.

As parent
bean definition’s properties are inherited by the child bean definitions, FixedDepositServiceImpl and PersonalBankingServiceImpl classes must define setter methods for jmsMessageSender, emailMessageSender and webServiceInvoker
properties. You have the option to either define
setter methods in FixedDepositServiceImpl and PersonalBankingServiceImpl classes or make FixedDepositServiceImpl and PersonalBankingServiceImpl classes as subclasses of ServiceTemplate class. In ch03-bankapp-inheritance-examples, the FixedDepositServiceImpl and PersonalBankingServiceImpl classes are subclasses of ServiceTemplate class.

The
following example listing shows the PersonalBankingServiceImpl class:

Example listing 3-4 – PersonalBankingServiceImpl class

Project
– ch03-bankapp-inheritance-examples

Source location -
src/main/java/sample/spring/chapter03/bankapp/service

package
sample.spring.chapter03.bankapp.service;

public class PersonalBankingServiceImpl extends
ServiceTemplate implements

 PersonalBankingService {

 private PersonalBankingDao
personalBankingDao;

 public void
setPersonalBankingDao(PersonalBankingDao personalBankingDao) {

 this.personalBankingDao =
personalBankingDao;

 }

 @Override

 public BankStatement getMiniStatement()
{

 return
personalBankingDao.getMiniStatement();

 }

}

In example
listing 3-3, we saw that the personalBankingService bean definition specifies personalBankingDao as a dependency. In the above example
listing, the setPersonalBankingDao setter method corresponds to the personalBankingDao dependency. Also,
notice that the PersonalBankingServiceImpl class is a subclass of the ServiceTemplate class.

The
following diagram shows that a parent bean definition (like serviceTemplate) need not be abstract, child bean definitions (like fixedDepositService and personalBankingService) may define additional properties, and classes represented by
parent (like ServiceTemplate class) and child bean definitions (like FixedDepositServiceImpl and PersonalBankingServiceImpl) may themselves be related by inheritance:

Figure 3-3 – Child bean
definitions add additional properties, parent bean definition is not abstract, and parent-child relationship exists between the classes
represented by the parent and child bean definitions

Figure 3-3
shows:

·
Spring container creates an instance of serviceTemplate bean because it’s not defined as abstract

·
FixedDepositServiceImpl and PersonalBankingServiceImpl classes (corresponding to the child bean definitions) are
subclasses of ServiceTemplate class – the class corresponding to the serviceTemplate parent bean definition.

·
And, fixedDepositService and personalBankingService bean definitions define additional properties, fixedDepositDao and personalBankingDao, respectively. You should note that the child bean definitions can
also define additional constructor arguments and method overrides (discussed in section 4-5).

As serviceTemplate bean definition is not abstract, other beans
can define serviceTemplate bean as their dependency. For instance, in example listing 3-3, the
serviceTemplate bean is a dependency of userRequestController bean. You can
infer from this discussion that if a parent bean definition is not abstract,
the functionality offered by the parent bean can be utilized not only by child
beans but also by other beans in the application context.

Bean definition
inheritance example – inheriting factory method configuration

Child bean
definitions can use bean definition inheritance to inherit factory method
configuration from the parent bean definition. Let’s look at an example that
shows factory method configurations are inherited by child bean definitions.

The
following ControllerFactory class defines a getController instance factory method:

Example listing 3-5 – ControllerFactory class

Project
– ch03-bankapp-inheritance-examples

Source location -
src/main/java/sample/spring/chapter03/bankapp/controller

package
sample.spring.chapter03.bankapp.controller;

public class ControllerFactory {

 public Object getController(String
controllerName) {

 Object controller = null;

 if ("fixedDepositController".equalsIgnoreCase(controllerName))
{

 controller = new
FixedDepositControllerImpl();

 }

 if
("personalBankingController".equalsIgnoreCase(controllerName)) {

 controller = new
PersonalBankingControllerImpl();

 }

 return controller;

 }

}

The above
example listing shows that the getController factory method creates an instance of FixedDepositControllerImpl or PersonalBankingControllerImpl
class, depending upon the value of the controllerName
argument passed to it. If the value of controllerName argument is fixedDepositController, the getController method creates an instance of FixedDepositControllerImpl class.
And, if the value of controllerName argument is personalBankingController, the getController method creates an instance of PersonalBankingControllerImpl class.

The
following bean definitions in the applicationContext.xml file of ch03-bankapp-inheritance-example project show that the child bean definitions inherit the getController instance factory method configuration from the parent bean definition:

Example listing 3-6 – applicationContext.xml - Bean definition inheritance – inheriting the factory method
configuration

Project
– ch03-bankapp-inheritance-examples

Source location -
src/main/resources/META-INF/spring

 <bean
id="controllerFactory"

class="sample.spring.chapter03.bankapp.controller.ControllerFactory"
/>

 <bean
id="controllerTemplate" factory-bean="controllerFactory"

 factory-method="getController"
abstract="true">

 </bean>

 <bean id="fixedDepositController"
parent="controllerTemplate">

 <constructor-arg
index="0" value="fixedDepositController" />

 <property
name=“fixedDepositService" ref="fixedDepositService" />

 </bean>

 <bean
id="personalBankingController"
parent="controllerTemplate">

 <constructor-arg
index="0" value="personalBankingController" />

 <property
name="personalBankingService" ref="personalBankingService"
/>

 </bean>

In the
above example listing, the ControllerFactory class represents a factory class that defines a getController instance factory method. The controllerTemplate bean definition specifies that the ControllerFactory’s getController
factory method is used for creating bean instances. The getController
method (refer example listing 3-5) creates an instance of FixedDepositControllerImpl or PersonalBankingControllerImpl bean, depending on the argument passed to the getController
method.

As the controllerTemplate bean definition has been defined as abstract,
it is up to the fixedDepositController and personalBankingController
child bean definitions to use the getController
factory method configuration. The fixedDepositController bean
definition would like to pass an argument to the ControllerFactory’s getController
factory method so that it creates an instance of FixedDepositControllerImpl bean. And,
personalBankingController bean definition would like to pass an argument to the ControllerFactory’s getController factory method so that it creates an instance of PersonalBankingControllerImpl bean. We saw in section 2-3 of chapter 2 that the <constructor-arg> element is used to pass an argument to an instance factory method. In example listing 3-6, the <constructor-arg> element has been used by fixedDepositController and personalBankingController child bean definitions to pass ‘fixedDepositService’ and ‘personalBankingService’ values,
respectively, to the getController factory method.

It is
recommended that you now run the main method of BankApp class
of ch03-bankapp-inheritance-examples project to see usage of the bean definition inheritance examples
discussed in this section.

Let’s now
look at how constructor arguments are matched.

3-3
Constructor argument matching

In the
previous chapter, we saw that the constructor arguments are specified in the bean
definitions using the <constructor-arg> element. In this section, we’ll look at how Spring container matches
a constructor argument specified by a <constructor-arg> element to
the corresponding constructor argument specified in the bean class’s
constructor.

Before we
go into the details of constructor argument matching, let’s look back at how we
pass arguments to a bean class’s constructor.

IMPORT chapter 3/ch03-bankapp-constructor-args-by-type (This project shows the MyBank application in which bean class’s constructor arguments are matched by type (explained later in this section). To run
the application, execute the main method of the BankApp class of this project)

Passing
simple values and bean references using <constructor-arg> element

If a
constructor argument is of simple Java type (like int, String, and so
on), the <constructor-arg> element’s value attribute is used to specify the value of the constructor argument.
If a constructor argument is a reference to a bean, you specify the name of the
bean using the <constructor-arg> element’s ref attribute.

The
following example listing shows the UserRequestControllerImpl class of ch03-bankapp-constructor-args-by-type project whose constructor accepts an argument of type ServiceTemplate:

Example listing 3-7 – UserRequestControllerImpl class

Project
– ch03-bankapp-constructor-args-by-type

Source location -
src/main/java/sample/spring/chapter03/bankapp/controller

package
sample.spring.chapter03.bankapp.controller;

public class UserRequestControllerImpl
implements UserRequestController {

 private ServiceTemplate serviceTemplate;

 public
UserRequestControllerImpl(ServiceTemplate serviceTemplate) {

 this.serviceTemplate =
serviceTemplate;

 }

 @Override

 public void submitRequest(Request
request) {

 //-- do something using
ServiceTemplate

serviceTemplate.getJmsMessageSender(); //-- For ex., send JMS message

 }

}

The
following example listing shows that a reference to ServiceTemplate instance (represented by serviceTemplate bean definition) is
passed to UserRequestControllerImpl’s constructor using ref attribute of <constructor-arg> element:

Example listing 3-8 – applicationContext.xml - Passing reference to a Spring bean as constructor argument

Project
– ch03-bankapp-constructor-args-by-type

Source location -
src/main/resources/META-INF/spring

<bean id="serviceTemplate"
class="sample.spring.chapter03.bankapp.base.ServiceTemplate">

</bean>

<bean
id="userRequestController"

 class="sample.spring.chapter03.bankapp.controller.UserRequestControllerImpl">

 <constructor-arg index="0"
ref="serviceTemplate" />

</bean>

With this
background information on how to pass simple values and bean references as
constructor arguments, let’s now look at how Spring container matches
constructor argument types to locate the bean’s constructor to be invoked.

Constructor
argument matching based on type

If the <constructor-arg> element’s index attribute is not specified, Spring container locates the constructor to be invoked
by matching the types referenced by the <constructor-arg> elements with
the argument types specified in the bean class’s constructor(s).

Let’s
first look at how Spring container matches constructor arguments when the
constructor arguments are Spring beans that are not
related by inheritance.

Constructor
arguments representing distinct Spring beans

The
following example listing shows the ServiceTemplate class that defines a
constructor that accepts references to JmsMessageSender, EmailMessageSender and WebServiceInvoker beans:

Example listing 3-9 – ServiceTemplate class

Project
– ch03-bankapp-constructor-args-by-type

Source location -
src/main/java/sample/spring/chapter03/bankapp/base

package sample.spring.chapter03.bankapp.base;

public class ServiceTemplate {

 public ServiceTemplate(JmsMessageSender
jmsMessageSender,

 EmailMessageSender
emailMessageSender,

 WebServiceInvoker
webServiceInvoker) {

 }

}

The
following example listing shows the bean definitions for the ServiceTemplate class and the beans referenced by ServiceTemplate:

Example listing 3-10 – applicationContext.xml - Bean definition for the ServiceTemplate class and its
dependencies

Project
– ch03-bankapp-constructor-args-by-type

Source location -
src/main/resources/META-INF/spring

<bean id="serviceTemplate"
class="sample.spring.chapter03.bankapp.base.ServiceTemplate">

 <constructor-arg
ref="emailMessageSender" />

 <constructor-arg
ref="jmsMessageSender" />

 <constructor-arg ref="webServiceInvoker"
/>

</bean>

<bean id="jmsMessageSender"
class="sample.spring.chapter03.bankapp.base.JmsMessageSender" />

<bean id="emailMessageSender"
class="sample.spring.chapter03.bankapp.base.EmailMessageSender" />

<bean
id="webServiceInvoker" class="sample.spring.chapter03.bankapp.base.WebServiceInvoker"
/>

In the
above example listing, the <constructor-arg> elements of serviceTemplate bean don’t specify the index attribute. The order in which the constructor arguments are
specified by the <constructor-arg> elements is: EmailMessageSender, JmsMessageSender, WebServiceInvoker. The order in which constructor arguments are specified in the ServiceTemplate class’s constructor is: JmsMessageSender, EmailMessageSender, WebServiceInvoker. As you can see, the order in which constructor arguments are
defined by the <constructor-arg> elements is different from the order specified by the ServiceTemplate class’s constructor.

If you
execute the main method of BankApp class of ch03-bankapp-constructor-args-by-type project, you’ll find that the Spring container successfully creates
an instance of ServiceTemplate bean. This is because JmsMessageSender, EmailMessageSender and WebServiceInvoker classes are distinct in nature (that is, they are not related by
inheritance), which makes it easier for the Spring container to inject their
instances into the ServiceTemplate class’s constructor in the correct order.

If the
constructor argument types are related by inheritance, Spring container needs
extra instructions to help resolve constructor arguments. Let’s now look at how
Spring container matches constructor arguments when beans referenced by the
constructor arguments are related by inheritance.

Constructor
arguments representing related Spring beans

Consider
the following SampleBean bean class whose constructor accepts argument types that are
related by inheritance:

Example listing 3-11 – SampleBean
class

public class SampleBean {

 public SampleBean(ABean aBean, BBean
bBean) { }

}

The above
example listing shows that the
SampleBean class’s constructor accepts ABean and BBean types as
arguments. ABean and BBean represent Spring beans that are related by inheritance; BBean is a
subclass of ABean.

The
following application context XML file shows the bean definitions for SampleBean, ABean and BBean classes:

Example listing 3-12 – Bean
definitions for SampleBean, ABean and BBean classes

 <bean id="aBean"
class="example.ABean"/>

 <bean id="bBean"
class="example.BBean"/>

 <bean id="sampleBean"
class="example.SampleBean">

 <constructor-arg
ref="bBean"/>

 <constructor-arg
ref="aBean"/>

 </bean>

As aBean and bBean beans
are related by inheritance, Spring container applies constructor arguments to
the SampleBean’s constructor in the order in which <constructor-arg> elements
appear in the bean definition for the SampleBean class. In the above sampleBean
bean definition, the first <constructor-arg> element refers to bBean bean and the second <constructor-arg> element refers to aBean bean. This means that bBean is passed as the first
constructor argument and aBean is passed as the second constructor argument to the SampleBean
constructor. As instance of ABean (the superclass) can’t be passed where BBean (the
subclass) instance is expected, the second <constructor-arg> element in
the sampleBean bean definition results in exception being thrown by the Spring
container. To handle such scenarios, you can use <constructor-arg> element’s index or type attribute
to identify the constructor argument to which <constructor-arg> element
applies. For instance, the following sampleBean bean definition makes use
of type attribute to indicate the type of the constructor argument to which
the <constructor-arg> element applies:

Example listing 3-13 – <constructor-arg> element’s type attribute identifies the type of the constructor argument

 <bean id="sampleBean"
class="example.SampleBean">

 <constructor-arg type="sample.spring.chapter03.bankapp.controller.BBean"
ref="bBean"/>

 <constructor-arg type="sample.spring.chapter03.bankapp.controller.ABean"
ref="aBean"/>

 </bean>

The <constructor-arg> element’s type attribute specifies the fully-qualified name of the type to which
the <constructor-arg> element applies. In the above example listing, the first <constructor-arg> applies to the constructor argument of type BBean, and the
second <constructor-arg> element applies to the constructor argument of type ABean.
Specifying the type attribute takes away the ambiguity that arises when constructor
arguments are related by inheritance.

NOTE If two or more constructor arguments are of the same type, the
only option is to use index attribute to identify the constructor argument to which each <constructor-arg> element applies.

So far we
have looked at constructor argument type matching scenarios in which
constructor arguments represented distinct or related Spring beans. We’ll now
look at how constructor argument types are matched for standard Java types
(like int, long, boolean, String, Date, and so on) and custom types.

Constructor
arguments representing standard Java types and custom types

If the
type of a constructor argument is a primitive type (like int, long, boolean, and so on) or
a String type or a custom type (like Address), the <constructor-arg> element’s value attribute is used to specify the value. If there are 2 or more
constructor arguments into which the string value specified by the value
attribute can be converted, it’ll not be possible for the Spring container to
derive the type (for example, whether the value represents an int or long or String) of
the constructor argument. In such scenarios, you need to explicitly specify the
type of the constructor argument using the type attribute.

The
following example listing shows the TransferFundsServiceImpl class that
defines a constructor which accepts arguments of types String, boolean, long and int:

Example listing 3-14 – TransferFundsServiceImpl class

Project
– ch03-bankapp-constructor-args-by-type

Source location -
src/main/java/sample/spring/chapter03/bankapp/service

package
sample.spring.chapter03.bankapp.service;

public class TransferFundsServiceImpl
implements TransferFundsService {

 public TransferFundsServiceImpl(String
webServiceUrl, boolean active, long timeout,

 int numberOfRetrialAttempts) {.....}

}

As the
above example listing shows, TransferFundsServiceImpl constructor accepts the following arguments: webServiceUrl,
active, timeout and numberOfRetrialAttempts. The following bean definition for the TransferFundsServiceImpl class shows how constructor argument values can be passed to the TransferFundsServiceImpl’s constructor:

Example listing 3-15 – Bean definition for the TransferFundsServiceImpl class

 <bean
id="transferFundsService"

class="sample.spring.chapter03.bankapp.service.TransferFundsServiceImpl">

 <constructor-arg
value="http://someUrl.com/xyz" />

 <constructor-arg value="true"
/>

 <constructor-arg
value="5" />

 <constructor-arg
value="200" />

 </bean>

Let’s
assume that the 3rd <constructor-arg> element (value attribute’s value is ‘5’) is supposed to supply value for the numberOfRetrialAttempts constructor argument, and the 4th <constructor-arg> element (value attribute’s value is ‘200’) is supposed to supply value for the timeout
constructor argument. Spring container applies <constructor-arg> elements to
the TransferFundsServiceImpl’s constructor in the order in which <constructor-arg> elements
appear in the transferFundsService bean definition. This means that the 3rd <constructor-arg> element applies to timeout argument, and the 4th <constructor-arg> element
applies to numberOfRetrialAttempts argument. To handle such ambiguities, you can specify the type of a constructor argument via <constructor-arg> element’s type
attribute, as shown in the following example listing:

Example listing 3-16 – applicationContext.xml - <constructor-arg> element’s type attribute

Project
– ch03-bankapp-constructor-args-by-type

Source location -
src/main/resources/META-INF/spring

 <bean
id="transferFundsService"

class="sample.spring.chapter03.bankapp.service.TransferFundsServiceImpl">

 <constructor-arg type="java.lang.String"
value="http://someUrl.com/xyz" />

 <constructor-arg type="boolean"
value="true" />

 <constructor-arg type="int"
value="5" />

 <constructor-arg type="long"
value="200" />

 </bean>

In the
above bean definition for the TransferFundsServiceImpl class, type attribute is used to specify the constructor argument type. Spring
container can now use type matching to correctly apply constructor arguments.

NOTE
If two or more constructor arguments are of the same type, the only option is
to use index attribute for identifying the constructor
argument to which each <constructor-arg> element applies.

In this
section, we saw how type matching is performed by Spring to resolve constructor
arguments. Let’s now look at how you can instruct Spring to perform constructor
argument matching based on constructor argument’s name.

IMPORT chapter 3/ch03-bankapp-constructor-args-by-name (This project shows the MyBank application in which bean class’s constructor arguments are matched by name. To run the application, execute the main method of
the BankApp class of this project)

Constructor
argument matching based on name

The <constructor-arg> element’s name attribute is used for specifying the name of the constructor
argument to which the <constructor-arg> element applies. The following example listing shows once again the
TransferFundsServiceImpl class whose constructor accepts multiple arguments:

Example listing 3-17 – TransferFundsServiceImpl
class

Project
– ch03-bankapp-constructor-args-by-name

Source location -
src/main/java/sample/spring/chapter03/bankapp/service

package
sample.spring.chapter03.bankapp.service;

public class TransferFundsServiceImpl
implements TransferFundsService {

 public TransferFundsServiceImpl(String
webServiceUrl, boolean active, long timeout,

 int numberOfRetrialAttempts) {
}

}

The above example listing shows that the names of the constructor
arguments defined by TransferFundsServiceImpl’s constructor are: webServiceUrl, active, timeout and numberOfRetrialAttempts.

NOTE The TransferFundsServiceImpl class’s constructor accepts arguments that are simple Java types
(like, int, long, boolean, String, and so on), but the concept explained in this section also
applies to scenarios in which constructor arguments are references to Spring
beans.

The following bean definition for the TransferFundsServiceImpl class uses <constructor-arg> element’s name attribute to specify the name of the constructor argument to which
the <constructor-arg> element applies:

Example listing 3-18 – applicationContext.xml - <constructor-arg> element’s name attribute

Project
– ch03-bankapp-constructor-args-by-name

Source location -
src/main/resources/META-INF/spring

 <bean
id="transferFundsService"

class="sample.spring.chapter03.bankapp.service.TransferFundsServiceImpl">

 <constructor-arg
name="webServiceUrl" value="http://someUrl.com/xyz" />

 <constructor-arg
name="active" value="true" />

 <constructor-arg
name="numberOfRetrialAttempts" value="5" />

 <constructor-arg
name="timeout" value="200" />

 </bean>

The above
configuration will work only if TransferFundsServiceImpl class is compiled with debug flag enabled (refer
to -g option of javac). When the debug flag is enabled, names of constructor arguments
are preserved in the generated .class file. If you don’t compile your classes with debug flag enabled,
the constructor argument names are lost during compilation, and Spring has no
way to locate the constructor argument corresponding to the constructor
argument name specified by the <constructor-arg> element’s name attribute.

If you
don’t want to compile your classes using debug flag enabled, you can use @ConstructorProperties annotation (introduced in Java SE 6) to clearly spell out names of
the constructor arguments, as shown here for TransferFundsServiceImpl class:

Example listing 3-19 – @ConstructorProperties annotation

Project
– ch03-bankapp-constructor-args-by-name

Source location -
src/main/java/sample/spring/chapter03/bankapp/service

package
sample.spring.chapter03.bankapp.service;

import java.beans.ConstructorProperties;

public class TransferFundsServiceImpl
implements TransferFundsService {

 @ConstructorProperties({"webServiceUrl","active","timeout","numberOfRetrialAttempts"})

 public TransferFundsServiceImpl(String
webServiceUrl, boolean active, long timeout,

 int numberOfRetrialAttempts) {
..... }

}

In the
above example listing, @ConstructorProperties annotation specifies the names of constructor arguments in the
order in which they appear in the bean class’s constructor. You must ensure that you use the same constructor argument names in the <constructor-arg> elements.

Let’s now
look at how the @ConstructorProperties annotation affects bean definition inheritance.

@ConstructorProperties
annotation and bean definition inheritance

If the
constructor of the class corresponding to the parent
bean definition is annotated with @ConstructorProperties annotation,
the bean class corresponding to the child
bean definition must also be annotated with @ConstructorProperties annotation.

The
following example listing shows the serviceTemplate (parent bean
definition) and FixedDepositService (child bean definition) bean definitions:

Example listing 3-20 – applicationContext.xml - Parent and child bean definitions

Project
– ch03-bankapp-constructor-args-by-name

Source location -
src/main/resources/META-INF/spring

 <bean id="serviceTemplate"

class="sample.spring.chapter03.bankapp.base.ServiceTemplate">

 <constructor-arg
name="emailMessageSender" ref="emailMessageSender" />

 <constructor-arg
name="jmsMessageSender" ref="jmsMessageSender" />

 <constructor-arg
name="webServiceInvoker" ref="webServiceInvoker" />

 </bean>

 <bean
id="FixedDepositService"

class="sample.spring.chapter03.bankapp.service.FixedDepositServiceImpl"

 parent="serviceTemplate">

 <property name=“fixedDepositDao"
ref="FixedDepositDao" />

 </bean>

The above
example listing shows that the serviceTemplate bean definition is not abstract, which means
that the Spring container will create an instance of serviceTemplate bean. The serviceTemplate bean definition specifies 3 <constructor-arg> elements,
corresponding to the 3 arguments defined by the ServiceTemplate class (refer example
listing 3-21). As we have specified constructor arguments by name in the serviceTemplate bean definition, the ServiceTemplate class’s constructor
is annotated with the @ConstructorProperties annotation to ensure that constructor argument names are available
to Spring at runtime, as shown here:

Example listing 3-21 – ServiceTemplate
class

Project
– ch03-bankapp-constructor-args-by-name

Source location -
src/main/java/sample/spring/chapter03/bankapp/base

package
sample.spring.chapter03.bankapp.base;

import java.beans.ConstructorProperties;

public class ServiceTemplate {

 @ConstructorProperties({"jmsMessageSender","emailMessageSender","webServiceInvoker"})

 public ServiceTemplate(JmsMessageSender
jmsMessageSender,

 EmailMessageSender
emailMessageSender,

 WebServiceInvoker
webServiceInvoker) { }

}

As FixedDepositService is a child bean definition of serviceTemplate, the <constructor-arg> configuration in serviceTemplate bean definition is inherited by the FixedDepositService bean definition.
This means that the FixedDepositServiceImpl class must define a constructor that accepts the same set of arguments as
defined by the ServiceTemplate class, and it must also be annotated with @ConstructorProperties annotation. If
you don’t annotate FixedDepositServiceImpl’s constructor with @ConstructorProperties annotation, Spring container will not be
able to match the inherited <constructor-arg> elements with the constructor arguments specified in the FixedDepositServiceImpl’s constructor.

You can’t
use @ConstructorProperties annotation for passing arguments by name to a static or instance factory method, as explained next.

@ConstructorProperties
annotation and factory methods

We saw in
section 2-3 of chapter 2 that the <constructor-arg> elements are
also used for passing arguments to static and instance factory methods. You might think that you can pass arguments by
name to static and instance factory methods by specifying the <constructor-arg> element’s name attribute
and annotating the factory method with @ConstructorProperties annotation.
You should note that @ConstructorProperties annotation is meant only for constructors; you
can’t annotate methods with @ConstructorProperties annotation. So, if you want to pass arguments by name to a static or instance factory method, the only option you have is to compile classes with
debug flag enabled.

NOTE If you compile classes with debug flag enabled, it results in .class files that are larger in size, but has no impact on the runtime
performance of the application. It only results in increased loading time for
the classes.

Let’s now
look at how to enable or disable debug flag in Eclipse IDE.

Enabling
(or disabling) the debug flag in Eclipse IDE

In Eclipse
IDE, follow these steps to enable the debug flag for projects:

1.
Go to Windows à Preferences
and select the option Java à Compiler

2.
You’ll now see a section titled ‘Classfile
Generation’. In this section, if you check the checkbox labeled ‘Add variable attributes
to generated class files (used by the debugger)’,
the debug flag is enabled. Unchecking this checkbox will disable
the debug flag.

So far we
have mostly seen bean definition examples in which bean properties and constructor
arguments were references to other beans. We’ll now look at bean definition
examples in which bean properties and constructor arguments are of primitive
type, collection type, java.util.Date, java.util.Properties, and so on.

3-4
Configuring different types of bean properties and constructor arguments

In real
world application development scenarios, properties and constructor arguments
of a Spring bean could range from a String type to reference to another
bean to any other standard (like java.util.Date, java.util.Map)
or custom (like Address) type. So far we have seen examples of how to supply value for String type
bean properties (using value attribute of <property> element) and String type constructor arguments (using value attribute of <constructor-arg> element). We also looked at how to inject dependencies via bean
properties (using ref attribute of <property> element) and constructor arguments (using ref attribute
of <constructor-arg> elements).

In this
section, we’ll look at built-in PropertyEditor implementations in Spring that simplify passing bean properties and
constructor arguments of types java.util.Date, java.util.Currency, primitive type, and so on. We’ll also look at how to specify
values for collection types (like java.util.List and java.util.Map)
in the application context XML file, and how to register a custom PropertyEditor
implementation with Spring.

Let’s now
look at bean definition examples that demonstrate use of built-in PropertyEditor
implementations.

IMPORT chapter 3/ch03-simple-types-examples (This project shows a Spring
application in which bean properties and constructor
arguments are of primitive type, java.util.Date, java.util.List,
java.util.Map, and so on. This project also shows how to register a custom PropertyEditor
implementation with Spring container. To run the
application, execute the main method of the SampleApp class of this project)

Built-in
property editors in Spring

JavaBeans PropertyEditors provide the necessary logic for converting a Java type to a string
value, and vice versa. Spring provides a couple of built-in PropertyEditors
that are used for converting string value of a bean property or a constructor
argument (specified via value attribute of <property> and <constructor-arg> elements) to the actual Java type of the property or constructor
argument.

Before we
look at examples involving built-in PropertyEditors, let’s first
understand the importance of PropertyEditors in setting values of bean properties or constructor arguments.

Consider
the following BankDetails class that we want to configure as a singleton-scoped bean with
pre-defined values for its attributes:

Example listing 3-22 – BankDetails
class

public class BankDetails {

 private String bankName;

 public void setBankName(String
bankName) {

 this.bankName = bankName;

 }

}

In the
above example listing, bankName is an attribute of the BankDetails class, and is of type String. The
following bean definition for the BankDetails class shows how to set
the value of bankName attribute to ‘My Personal Bank’:

Example listing 3-23 – Bean definition for the BankDetails class

<bean id= "bankDetails" class=
"BankDetails">

 <property name= "bankName"
value= "My Personal Bank"/>

</bean>

In the
above bean definition, the <property> element’s value attribute specifies a string value for the bankName property.
As you can see, if a bean property is of type String, you can simply set that
property value using <property> element’s value attribute. Similarly, if a constructor argument is of type String, you
can set the constructor argument value using <constructor-arg> element’s value
attribute.

Let’s say
that the following attributes (along with their setter methods) are added to
the BankDetails class: a bankPrimaryBusiness
attribute of type byte[], a headOfficeAddress attribute of type char[], a privateBank attribute of type char, a primaryCurrency attribute of type java.util.Currency,
a dateOfInception attribute of type java.util.Date,
and a branchAddresses attribute of type java.util.Properties. The following example listing shows the modified BankDetails
class:

Example listing 3-24 – BankDetails
class containing different types of properties

Project
– ch03-simple-types-examples

Source location -
src/main/java/sample/spring/chapter03/beans

package sample.spring.chapter03.beans;

.....

public class BankDetails {

 private String bankName;

 private byte[]
bankPrimaryBusiness;

 private char[]
headOfficeAddress;

 private char privateBank;

 private Currency
primaryCurrency;

 private Date dateOfInception;

 private Properties
branchAddresses;

 public void setBankName(String
bankName) {

 this.bankName = bankName;

 }

 //-- more setter methods

}

You can
configure the BankDetails class as a Spring bean by specifying string values for the
properties, and letting the Spring container convert these string values into
the corresponding Java types of the properties by using registered JavaBeans PropertyEditor
implementations.

The following
bean definition for the BankDetails class shows that simple string values are specified for different
property types:

Example listing 3-25 – applicationContext.xml - Bean definition for the BankDetails class

Project
– ch03-simple-types-examples

Source location - src/main/resources/META-INF/spring

 <bean id="bankDetails"
class="sample.spring.chapter03.beans.BankDetails">

 <property
name="bankName" value="My Personal Bank" />

 <property
name="bankPrimaryBusiness" value="Retail banking" />

 <property
name="headOfficeAddress" value="Address of head office"
/>

 <property
name="privateBank" value="Y" />

 <property
name="primaryCurrency" value="INR" />

 <property
name="dateOfInception"
value="30-01-2012"></property>

 <property
name="branchAddresses">

 <value>

 x = Branch X's address

 y = Branch Y's address

 </value>

 </property>

 </bean>

The above
example listing shows that string values are specified for properties of types java.util.Date,
java.util.Currency, char[], byte[], char and java.util.Properties. Spring container uses registered PropertyEditors for converting the
string value of the property or constructor argument to the corresponding Java
type of the property or constructor argument. For instance, Spring container
converts the value ‘30-01-2012’ of dateOfInception property to java.util.Date
type using CustomDateEditor (a built-in PropertyEditor implementation for java.util.Date type).

If you
look at how branchAddresses property (of type java.util.Properties) is configured in example listing 3-25, you’ll notice that instead
of <property> element’s value attribute, <value> sub-element of <property> element has been used to specify the value for the property. In
case of single-valued properties, the use of <property> element’s value
attribute is preferred over <value> sub-element. But, if you need to specify multiple values for a
property or the values need to be specified on separate lines (as in the case
of branchAddresses property), the <value> sub-element is preferred over value attribute. In the next section,
you’ll see that values for properties (or constructor arguments) of type java.util.Properties can also be specified using <props> sub-element of <property> (or <constructor-arg>) element.

Spring comes with couple of built-in PropertyEditor implementations that
perform the task of converting values specified in the application context XML
file to the Java type of the bean property or constructor argument. The
following table describes some of the built-in PropertyEditor implementations in
Spring:

 	
 Built-in PropertyEditor implementation

 	
 Description

 	
 CustomBooleanEditor

 	
 converts string value to Boolean or boolean type

 	
 CustomNumberEditor

 	
 converts string value to a number (like int, long, and so
 on)

 	
 ChracterEditor

 	
 converts string value to char type

 	
 ByteArrayPropertyEditor

 	
 converts string value to byte[]

 	
 CustomDateEditor

 	
 converts string value to java.util.Date type

 	
 PropertiesEditor

 	
 converts string value to java.util.Properties type

The above
table shows only a subset of built-in PropertyEditor implementations in
Spring. For a complete list, refer to the org.springframework.beans.propertyeditors package of Spring. It is important to note
that not all built-in PropertyEditor implementations in Spring are registered with the Spring container
by default. For instance, you need to explicitly register CustomDateEditor to allow Spring container to perform conversion from a string value
to a java.util.Date type. Later in this section, we’ll look at how you can register
property editors with Spring container.

Let’s now
look at how to specify values for bean properties (or constructor arguments) of
types java.util.List, java.util.Set and java.util.Map.

Specifying
values for different collection types

The <list>, <map>
and <set> sub-elements (defined in Spring’s beans schema) of <property> and <constructor-arg> elements are used to set properties and constructor arguments of
type java.util.List, java.util.Map and java.util.Set, respectively.

NOTE Spring’s util schema also provides <list>, <set> and <map> elements that simplify setting properties and
constructor arguments of different collection types. Later in this chapter,
we’ll look at Spring’s util
schema elements in detail.

The
following DataTypesExample class shows that its constructor accepts arguments of different
types:

Example listing 3-26 – DataTypesExample
class

Project
– ch03-simple-types-examples

Source location -
src/main/java/sample/spring/chapter03/beans

package sample.spring.chapter03.beans;

import java.beans.ConstructorProperties;

.....

public class DataTypesExample {

 private static Logger logger =
Logger.getLogger(DataTypesExample.class);

 @SuppressWarnings("rawtypes")

 @ConstructorProperties({
"byteArrayType", "charType", "charArray",

 "classType",
"currencyType", "booleanType", "dateType",
"longType",

 "doubleType",
"propertiesType", "listType", "mapType",
"setType",

"anotherPropertiesType" })

 public DataTypesExample(byte[]
byteArrayType, char charType,

 char[] charArray, Class
classType, Currency currencyType,

 boolean booleanType, Date
dateType, long longType,

 double doubleType, Properties
propertiesType, List<Integer> listType,

 Map mapType, Set
setType, Properties anotherPropertiesType) {

 logger.info("classType "
+ classType.getName());

 logger.info("listType " +
listType);

 logger.info("mapType " +
mapType);

 logger.info("setType " +
setType);

logger.info("anotherPropertiesType " + anotherPropertiesType);

 }

}

The above
example listing shows that the DataTypesExample class’s constructor accepts arguments of types java.util.List,
java.util.Map, java.util.Set and java.util.Properties, and so on, and logs the value of each constructor argument.

The
following example listing shows the bean definition for the DataTypesExample class:

Example listing 3-27 – applicationContext.xml - Bean definition for DataTypesExample class

Project
– ch03-simple-types-examples

Source location - src/main/resources/META-INF/spring

 <bean id="dataTypes"
class="sample.spring.chapter03.beans.DataTypesExample">

 <constructor-arg
name="anotherPropertiesType">

 <props>

 <prop
key="book">Getting started with the Spring Framework</prop>

 </props>

 </constructor-arg>

 <constructor-arg
name="listType" value-type="java.lang.Integer" >

 <list>

 <value>1</value>

 <value>2</value>

 </list>

 </constructor-arg>

 <constructor-arg
name="mapType">

 <map>

 <entry>

 <key>

 <value>map
key 1</value>

 </key>

 <value>map key
1’s value</value>

 </entry>

 </map>

 </constructor-arg>

 <constructor-arg
name="setType">

 <set>

 <value>Element
1</value>

 <value>Element 2</value>

 </set>

 </constructor-arg>

 </bean>

The above
example listing shows:

·
the value of anotherPropertiesType (of type java.util.Properties) is specified using the <props> sub-element of <constructor-arg> element. Each <prop> element specifies a key-value pair; the key attribute
specifies the key value and the content of <prop> element is the value for
the key. Instead of using <props> element, you can use <value> sub-element of <constructor-arg> element to specify the value for anotherPropertiesType argument.

·
the value of listType constructor argument (of
type java.util.List) is specified using the <list> sub-element of <constructor-arg>. The <value> sub-elements of <list> element specify items contained in the list. The <list>
element’s value-type attribute specifies the Java type of the elements that the java.util.List
type constructor argument accepts. As the listType constructor argument is of
type List<Integer> (refer example listing 3-26), the value-type attribute’s value is
specified as java.lang.Integer. The value-type attribute is optional, and is particularly useful if you are using a parameterized List type, like List<Integer>. If you specify the value-type attribute, Spring container uses the registered property editors to
perform conversion of values to the type specified by the value-type
attribute, followed by converting (if required) the values to the type accepted
by the parameterized List type. If you don’t specify the value-type attribute, Spring
container simply uses the registered property editors to perform conversion of
values to the type accepted by the parameterized List type.

·
the value of mapType constructor
argument (of type java.util.Map) is specified using the <map> sub-element of <constructor-arg>. The <entry> sub-element of <map> specifies a key-value pair contained in the Map; the <key>
element specifies the key and the <value> element specifies the
value for the key. The key-type and value-type
attributes of <map> element specify the Java type of keys and values that java.util.Map
accepts. The key-type and value-type attributes are optional, and especially useful if you are using
parameterized Map type, like Map<Integer,
Integer>. Spring container uses registered
property editors to perform conversion of keys and values to the types
specified by the key-type and value-type attributes, and to the types accepted by the parameterized Map type.

·
 the value of the setType constructor argument (of type
java.util.Set) is specified using the <set> sub-element of <constructor-arg>. Each <value> sub-element of <set> specifies an element contained in the Set. The value-type
attribute of <set> element specifies the Java type of elements that java.util.Set
accepts. The value-type attribute is optional, and is useful if you are using parameterized
Set type, like Set<Integer>. Spring container uses registered property editors to perform
conversion of values to the type specified by the value-type
attribute, and to the type accepted by the parameterized Set type.

In DataTypesExample
class (refer example listing 3-26 and 3-27), constructor arguments of type List, Map and Set contained
elements of type String or Integer. In an application, a collection may contain elements of type Map, Set, Class, Properties,
or any other Java type. The elements contained in the collection can also be
bean references. To address such scenarios, Spring allows you to use elements
like <map>, <set>, <list>, <props>, <ref>, and so on, as sub-elements of <list>, <map>
and <set> elements. Let’s now look at examples that demonstrate how to add
different types of elements to Map, List and Set type constructor arguments and bean properties.

Adding elements of
type List, Map, Set
and Properties to
collection types

If a bean
property or constructor argument is of type List<List>, simply use a nested
<list> element, as shown here:

Example listing 3-28 – Configuration example: List inside a List

<constructor-arg
name="nestedList">

 <list>

 <list>

 <value>A simple String
value in the nested list</value>

 <value>Another simple
String value in nested list</value>

 </list>

 </list>

</constructor-arg>

The <constructor-arg> element shown in the above example listing supplies value for a
constructor argument named nestedList which is of type List<List>. The nested <list> element represents an
element of type List. Similarly, you can use <map>, <set>
and <props> elements inside a <list> element to set value of properties or constructor arguments of type
List<Map>, List<Set> and List<Properties>, respectively. As with the <list> element, a <set>
element can contain <set>, <list>, <map> or <props> element. In case of a <map> element, you can use <map>, <set>, <list>
or <props> element to specify key and value of an entry.

The
following example listing shows how you can specify values for a Map<List, Set> type constructor argument:

Example listing 3-29 – Configuration example: Map containing List type as
key and Set type as value

 <constructor-arg
name="nestedListAndSetMap">

 <map>

 <entry>

 <key>

 <list>

 <value>a List
element</value>

 </list>

 </key>

 <set>

 <value>a Set
element</value>

 </set>

 </entry>

 </map>

 </constructor-arg>

The above
example listing shows that the nestedListAndSetMap constructor argument is of Map type whose key is of type List and value
is of type Set. The <key> element can have either of the following elements as its
sub-element: <map>, <set>, <list> and <props>. The value for the key can be defined using <map>, <set>, <list>
or <props> element.

Adding bean
references to collection types

You can
use <ref> elements inside <list> and <set> elements to add references to beans into properties and constructor
arguments of type List and Set, respectively.

The
following example listing shows how references to beans are added to a List type
constructor argument:

Example listing 3-30 –
Configuration example: List containing reference to beans

<bean>

 <constructor-arg
name="myList">

 <list>

 <ref bean="aBean"
/>

 <ref bean="bBean"
/>

 </list>

 </constructor-arg>

</bean>

<bean id="aBean"
class="somepackage.ABean" />

<bean id="bBean"
class="somepackage.BBean" />

The above
example listing shows that the myList constructor argument is of type List and it contains 2 elements - a reference to aBean bean and a reference to bBean bean. The <ref>
element’s bean attribute specifies the name of the bean referenced by the <ref>
element.

As with
the <list> element, you can use <ref> elements inside <set>
element to add bean references to a Set type constructor argument or bean
property. In case of <map> element, you can use <ref> element inside a <key>
element to specify a bean reference as a key, and use the <ref>
element to specify a bean reference as a value for the key. The following
example listing shows a Map type constructor argument that contains a single key-value pair in
which both key and value are references to beans:

Example listing 3-31 –
Configuration example: Map containing bean references as keys and values

<bean>

 <constructor-arg
name="myMapWithBeanRef">

 <map>

 <entry>

 <key>

 <ref
bean="aBean" />

 </key>

 <ref bean="bBean"
/>

 </entry>

 </map>

 </constructor-arg>

</bean>

<bean id="aBean"
class="somepackage.ABean" />

<bean id="bBean"
class="somepackage.BBean" />

The above
example listing shows that myMapWithBeanRef constructor argument is of type Map and it
contains a key-value pair in which the key is a reference to aBean bean and
corresponding value is a reference to bBean bean.

Adding bean names
to collection types

If you
want to add a bean name (as specified by the id attribute of <bean>
element) to a List, Map or Set type constructor argument or bean property, you can use the <idref>
element inside <map>, <set> and <list> elements. The following example listing shows a Map type
constructor argument that contains a single key-value pair, where bean name is
the key and bean reference is the value:

Example listing 3-32 –
Configuration example: Map containing bean name as key and bean reference as value

 <constructor-arg
name="myExample">

 <map>

 <entry>

 <key>

 <idref bean="sampleBean"
/>

 </key>

 <ref
bean="sampleBean" />

 </entry>

 </map>

 </constructor-arg>

 <bean id="sampleBean"
class="somepackage.SampleBean" />

The above
example listing shows that the myExample constructor argument is of type Map whose key is the string value
‘sampleBean’ and value is the sampleBean bean. We could have used <value> element to set
‘sampleBean’ string value as the key, but <idref> element is used because
Spring container verifies existence of the sampleBean bean when the application
is deployed.

NOTE
You can use the <idref> element inside a <property> or <constructor-arg> element to set a bean name as the value of a bean property
or constructor argument.

Adding null values
to collection types

You can
add a null value to collections of type Set and List using <null>
element. The following example listing shows how to add a null value to
a Set type constructor argument using <null> element:

Example listing 3-33 –
Configuration example: Set containing a null element

 <constructor-arg
name="setWithNullElement">

 <set>

 <value>Element
1</value>

 <value>Element
2</value>

 <null />

 </set>

 </constructor-arg>

In the
above example listing, setWithNullElement
constructor argument contains 3 elements: Element 1, Element 2 and null.

To add a null key to a Map type
constructor argument or property, you can use <null> element inside the <key>
element. And, to add a null value, you can add a <null> element inside the <entry>
element. The following example listing shows a Map type constructor argument that
contains a null key and a null value:

Example listing 3-34 –
Configuration example: Map containing a null key and a null value

 <constructor-arg name="mapType">

 <map>

 <entry>

 <key>

 <null />

 </key>

 <null />

 </entry>

 </map>

 </constructor-arg>

The above
example listing shows that an element with null key and null value is
added to the mapType constructor argument using <null> element.

NOTE You can also use <null> element inside <property> and <constructor-arg> elements to set null values for properties and constructor arguments,
respectively.

Let’s now
look at how to specify values for array type properties and constructor
arguments.

Specifying
values for arrays

If a bean
class defines an array type property, you can set its value using the <array>
sub-element of <property> element. Similarly, you can set an array type constructor argument
using the <array> sub-element of <constructor-arg> element.

The
following example listing shows how you can set a bean property of type int[]:

Example listing 3-35 –
Configuration example: Setting value of a bean property of type int[]

 <property
name="numbersProperty">

 <array>

 <value>1</value>

 <value>2</value>

 </array>

 </property>

In the above
example listing, each <value> sub-element of the <array> element represents an element in the numbersProperty array. The property
editors registered with the Spring container are used to convert the string
value specified by each of the <value> element to int type. You can use <array> element inside <list>, <set> and <map> elements. You can also use <list>, <set>, <map>, <props>
and <ref> elements inside an <array> element to create arrays of List, Set, Map, Properties and bean references,
respectively. If you want to create an array of arrays, you can use <array>
elements inside an <array> element.

We
discussed that <list>, <map> and <set> elements are used to set properties or constructor arguments of
type List, Map and Set, respectively. Let’s now look at the default collection
implementation that is created by Spring for each of these elements.

Default
collection implementation for <list>,
<set> and <map> elements

The following table shows the default collection implementation that
is created by Spring for <list>, <set> and <map> elements:

 	
 Collection element

 	
 Default collection implementation created by Spring

 	
 <list>

 	
 java.util.ArrayList

 	
 <set>

 	
 java.util.LinkedHashSet

 	
 <map>

 	
 java.util.LinkedHashMap

The above
table suggests:

·
if a property’s (or a constructor argument’s)
value is specified using <list> element, Spring creates an instance of ArrayList and
assigns it to the property (or the constructor argument).

·
if a property’s (or a constructor argument’s)
value is specified using <set> element, Spring creates an instance of LinkedHashSet
and assigns it to the property (or the constructor argument).

·
if a property’s (or a constructor argument’s)
value is specified using <map> element, Spring creates an instance of LinkedHashMap
and assigns it to the property (or the constructor argument).

It is
likely that you may want to substitute a different implementation of List, Set or Map to a bean
property or a constructor argument. For instance, instead of java.util.ArrayList, you may want to assign an instance of java.util.LinkedList to a bean property of type List. In such scenarios, it is
recommended to use <list>, <map> and <set> elements of Spring’s util schema (explained in section 3-8).
The <list>, <set> and <map> elements of Spring’s util schema provide the option to
specify the fully-qualified name of the concrete collection class that you want
to assign to the property or constructor argument of the bean.

Let’s now
look at some of the built-in property editors provided by Spring.

3-5 Built-in
property editors

Spring
provides a couple of built-in property editors that are useful when setting
bean properties and constructor arguments. Let’s take a quick look at CustomCollectionEditor, CustomMapEditor and CustomDateEditor built-in property editors. To view the complete list of built-in
property editors, refer to org.springframework.beans.propertyeditors package.

CustomCollectionEditor

CustomCollectionEditor property
editor is responsible for converting a source Collection (like, java.util.LinkedList) type to the target Collection (like, java.util.ArrayList) type. By default, CustomCollectionEditor is registered for Set, SortedSet and List types.

Consider
the following CollectionTypesExample class that defines attributes (and
corresponding setter methods) of type Set and List:

Example listing 3-36 – CollectionTypesExample class

Project – ch03-simple-types-examples

Source location - src/main/java/sample/spring/chapter03/beans

package sample.spring.chapter03.beans;

import java.util.List;

import java.util.Set;

public class CollectionTypesExample {

 private Set setType;

 private List listType;

 //-- setter methods for attributes

 public void setSetType(Set setType) {

 this.setType = setType;

 }

}

CollectionTypesExample class defines setType and listType
attributes of type Set and List, respectively. The following example listing shows the bean
definition for CollectionTypesExample class:

Example listing 3-37 – applicationContext.xml - Bean definition for CollectionTypesExample class

Project
– ch03-simple-types-examples

Source location - src/main/resources/META-INF/spring

 <bean
class="sample.spring.chapter03.beans.CollectionTypesExample">

 <property
name="listType">

 <set>

 <value>set element
1</value>

 <value>set element
2</value>

 </set>

 </property>

 <property
name="setType">

 <list>

 <value>list element
1</value>

 <value>list element
2</value>

 </list>

 </property>

 </bean>

You might
think that the above configuration is incorrect because <set>
element has been used to set the value of listType property (of type List), and
<list> element has been used to set the value of setType
property (of type Set).

The above
configuration is completely legal, and the Spring container does not complain. This is because CustomCollectionEditor converts the ArrayList
instance (created corresponding to the <list> type element) to LinkedHashSet
type (an implementation of Set type) before setting the setType property. Also, CustomCollectionEditor
converts the LinkedHashSet instance (created
corresponding to the <set> type element) to ArrayList type (an implementation of List type) before setting the listType property.

Figure 3-4 – CustomCollectionEditor converts the LinkedHashSet to ArrayList type

Figure 3-4
shows that the CustomCollectionEditor converts the LinkedHashSet type to ArrayList to set the value of CollectionTypesExample’s listType property. The figure shows the sequence of steps that are performed
by Spring to set the value of listType property. First, Spring creates an instance of LinkedHashSet
corresponding to the <set> element. As the listType property is of type List (refer example listing 3-36), the CustomCollectionEditor comes into
picture for setting the listType property’s value. If the type of the bean property is List, CustomCollectionEditor creates an instance of ArrayList and populates it with the
elements from the LinkedHashSet. In the end, the value of the listType variable is set to the ArrayList
implementation created by CustomCollectionEditor.

It is
important to note that if a property or constructor argument type is a concrete
collection class (like LinkedList), CustomCollectionEditor simply creates an instance of the concrete collection class and
adds elements to it from the source collection. The following figure shows a
scenario in which the bean property is of type java.util.Vector (a concrete
collection class):

Figure 3-5 CustomCollectionEditor converts the ArrayList to Vector type

The above
figure shows that the CustomCollectionEditor creates an instance of Vector (a concrete collection class)
and adds elements to it from the source collection, ArrayList.

Let’s now
look at CustomMapEditor property editor.

CustomMapEditor

CustomMapEditor property editor deals
with converting a source Map type (like HashMap) to a target Map type (like TreeMap). By default, CustomMapEditor is registered only for SortedMap type.

Figure 3-6
shows a scenario in which CustomMapEditor converts LinkedHashMap (the source Map type) to TreeMap (an implementation of SortedMap type).

Figure 3-6
shows the sequence of steps performed by Spring to set the value of mapType
property. First, Spring creates an instance of LinkedHashMap corresponding to the <map>
element. As the mapType property is of type SortedMap, CustomMapEditor comes into picture while setting the value of mapType
property. CustomMapEditor creates an instance of TreeMap (a concrete implementation of
SortedSet interface), adds key-value pairs from LinkedHashMap
to the newly created TreeMap instance and assigns the TreeMap instance to the mapType
property.

Figure 3-6 CustomMapEditor converts the LinkedHashMap (the source Map type) to TreeMap (the target Map type) type

CustomDateEditor

CustomDateEditor is a property editor
for java.util.Date type bean properties and constructor arguments. CustomDateEditor supports a custom
java.text.DateFormat that is used for formatting
a date/time string to a java.util.Date type object, and parsing a java.util.Date type object to a
date/time string. In the next section, we’ll see how CustomDateEditor is used for setting bean properties and constructor arguments of
type java.util.Date. In ch03-simple-types-examples project, CustomDateEditor converts the string value of a bean property (refer dateOfInception attribute of BankDetails class) or constructor argument (refer dateType
constructor argument of DataTypesExample class) to java.util.Date type.

In ch03-simple-types-examples project, some of the other built-in property editors that are
utilized by beans include: ByteArrayPropertyEditor - for converting a string value to byte[] (refer bankPrimaryBusiness attribute of BankDetails class), CurrencyEditor – for converting a currency code to a java.util.Currency object (refer primaryCurrency attribute of BankDetails class), CharacterArrayPropertyEditor – for converting a string value to a char[] (refer headOfficeAddress attribute of BankDetails class), and so on.

Let’s now
look at how to register property editors with the Spring container.

3-6
Registering property editors with the Spring container

Spring’s BeanWrapperImpl class registers a couple of built-in property editors with the
Spring container. For instance, CustomCollectionEditor, CustomMapEditor,
CurrencyEditor, ByteArrayPropertyEditor and CharacterArrayEditor property editors are registered by default with the Spring
container. But, CustomDateEditor property editor is not registered by default
with the Spring container. To register property editors with the Spring
container, you can use Spring’s CustomEditorConfigurer special bean. CustomEditorConfigurer class implements Spring’s BeanFactoryPostProcessor interface (explained
in detail in section 5-4 of chapter 5), and it is automatically detected and executed
by the Spring container.

In ch03-simple-types-examples project, BankDetails class (refer example listing 3-24) defines a dateOfInception property of type java.util.Date. The value specified for the dateOfInception property is
‘30-01-2012’ (refer example listing 3-25). To convert the string value
‘30-01-2012’ to java.util.Date type, you must register a custom property editor for java.util.Date
type or you can register Spring’s built-in CustomDateEditor property editor with
the Spring container.

To register
property editors with the Spring container, you need to do the following:

1.
Create a class that implements Spring’s PropertyEditorRegistrar interface. This class is responsible for registering property
editors with the Spring container.

2.
Configure the PropertyEditorRegistrar
implementation as a Spring bean in the application context XML file.

3.
Configure Spring’s CustomEditorConfigurer special bean in the application context XML file, and provide it with
reference to the PropertyEditorRegistrar implementation (that you created in step 1 and configured in step
2).

Let’s now
see how CustomDateEditor is registered with the Spring container in ch03-simple-types-examples project.

Creating a PropertyEditorRegistrar implementation

The
following example listing shows the MyPropertyEditorRegistrar class that
implements PropertyEditorRegistrar interface:

Example listing 3-38 – MyPropertyEditorRegistrar class

Project – ch03-simple-types-examples

Source location - src/main/java/sample/spring/chapter03/beans

package sample.spring.chapter03.beans;

import java.text.SimpleDateFormat;

import java.util.Date;

import
org.springframework.beans.PropertyEditorRegistrar;

import
org.springframework.beans.PropertyEditorRegistry;

import
org.springframework.beans.propertyeditors.CustomDateEditor;

public class MyPropertyEditorRegistrar implements PropertyEditorRegistrar {

 @Override

 public void
registerCustomEditors(PropertyEditorRegistry registry) {

 registry.registerCustomEditor(Date.class,
new CustomDateEditor(

 new
SimpleDateFormat("dd-MM-yyyy"), false));

 }

}

The above
example listing shows that the MyPropertyEditorRegistrar class implements Spring’s PropertyEditorRegistrar interface,
and provides implementation for registerCustomEditors method defined in the PropertyEditorRegistrar interface.
The PropertyEditorRegistry instance passed to the registerCustomEditors method is used
for registering property editors. PropertyEditorRegistry’s registerCustomEditor method is used for registering a PropertyEditor implementation with
the Spring container. In the above example listing, PropertyEditorRegistry’s registerCustomEditor
is used for registering a CustomDateEditor property editor with the Spring container.

Configuring
the CustomEditorConfigurer class

The
following example listing shows how the CustomEditorConfigurer class is
configured in the application context XML file:

Example listing 3-39 – applicationContext.xml - CustomEditorConfigurer configuration

Project
– ch03-simple-types-examples

Source location - src/main/resources/META-INF/spring

 <bean id="
myPropertyEditorRegistrar"

class="sample.spring.chapter03.beans.MyPropertyEditorRegistrar " />

 <bean
id="editorConfigurer"

class="org.springframework.beans.factory.config.CustomEditorConfigurer">

 <property
name="propertyEditorRegistrars">

 <list>

 <ref
bean="myPropertyEditorRegistrar"/>

 </list>

 </property>

 </bean>

In the
above example listing, myPropertyEditorRegistrar bean definition configures MyPropertyEditorRegistrar class as a Spring bean. MyPropertyEditorRegistrar class implements Spring’s PropertyEditorRegistrar interface,
and is responsible for registering additional property editors with Spring
container. CustomEditorConfigurer’s propertyEditorRegistrars property specifies a list of PropertyEditorRegistrar
implementations. In the above example listing, myPropertyEditorRegistrar is specified as one of the values of propertyEditorRegistrars property. CustomEditorConfigurer bean is automatically detected and executed by the Spring
container, resulting in registration of property editors by the MyPropertyEditorRegistrar instance.

Let’s now
look at how to use p-namespace (for bean properties) and c-namespace (for constructor
arguments) to write concise bean definitions in application context XML files.

3-7 Concise
bean definitions with p and c namespaces

To make
bean definitions less verbose in application context XML files, Spring provides
p
and c namespaces to specify values for bean properties and constructor
arguments, respectively. The p and c namespaces are alternatives to using <property> and <constructor-arg> elements, respectively.

Let’s
first look at p-namespace.

IMPORT chapter 3/ch03-namespaces-example (This project shows a Spring
application in which bean properties and constructor
arguments are set using p- and c-namespaces, respectively. To run the
application, execute the main method of the SampleApp class of this project)

p-namespace

To use p-namespace to
set bean properties, specify bean properties as attributes of the <bean>
element, and specify each bean property to be in the p-namespace.

The
following bean definition shows how to use p-namespace to set bean properties:

Example listing 3-40 – applicationContext.xml - p-namespace example

Project – ch03-namespaces-example

Source location - src/main/resources/META-INF/spring

<beans
xmlns="http://www.springframework.org/schema/beans"

xmlns:p="http://www.springframework.org/schema/p" xsi:schemaLocation=".....">

 <bean id="bankDetails"
class="sample.spring.chapter03.beans.BankDetails"

 p:bankName="My Personal
Bank" p:bankPrimaryBusiness="Retail banking"

 p:headOfficeAddress="Address
of head office" p:privateBank="Y"

 p:primaryCurrency="INR"
p:dateOfInception="30-01-2012"

 p:branchAddresses-ref="branchAddresses"/>

</beans>

In the
application context XML file shown above, p-namespace is specified via xmlns
attribute. The bankDetails bean definition makes use of the p prefix for the p-namespace to
specify bean properties. If you compare the above example listing with the
example listing 3-25, you’ll notice that the above example listing is less verbose. Even though it is possible to use a mix of <property> elements and p-namespace to specify bean properties, it’s recommended that you
choose one style for specifying bean properties and use it consistently in bean
definitions.

NOTE As p-namespace
is implemented as part of Spring, there is no schema corresponding to p-namespace. For this reason, you don’t see any
schema reference corresponding to p-namespace in example listing 3-40. If you want your IDE to
autocomplete bean property names when using p-namespace, consider using IntelliJ IDEA or SpringSource
Tool Suite (STS).

If a bean
property is not a reference to another bean, it is specified using the following
syntax:

p:<property-name>="<property-value>"

here, <property-name> is the name of the bean property, and <property-value> is the value of the bean property.

If a bean
property is a reference to another bean, it is specified using the following
syntax:

p:<property-name>-ref="<bean-reference>"

here, <property-name> is the name of the bean property, and <bean-reference> is the id (or name) of the referenced bean. It is important to note that the
name of the bean property is followed by --ref. As the branchAddresses property of BankDetails bean represents a reference to the branchAddresses
bean, the branchAddresses property is specified as p:branchAddresses-ref in example
listing 3-40.

Let’s now
look at how c-namespace is used for setting constructor arguments.

c-namespace

To use c-namespace to
supply values for constructor arguments, specify constructor arguments as
attributes of the <bean> element, and specify each constructor argument to be in the c-namespace.

The
following example listing shows the BankStatement class that we’ll
configure as a Spring bean using c-namespace.

Example listing 3-41 – BankStatement
class

Project – ch03-namespaces-example

Source location - src/main/java/sample/spring/chapter03/beans

package sample.spring.chapter03.beans;

import java.beans.ConstructorProperties;

public class BankStatement {

 @ConstructorProperties({
"transactionDate", "amount", "transactionType",

 "referenceNumber" })

 public BankStatement(Date
transactionDate, double amount,

 String transactionType, String
referenceNumber)
{

 this.transactionDate =
transactionDate;

 this.amount = amount;

 }

}

The
following bean definition for the BankStatement class shows usage of c-namespace
for setting values of constructor arguments:

Example listing 3-42 – applicationContext.xml - c-namespace example

Project – ch03-namespaces-example

Source location - src/main/resources/META-INF/spring

<beans
xmlns="http://www.springframework.org/schema/beans"

 xmlns:c="http://www.springframework.org/schema/c"

xsi:schemaLocation=".....">

 <bean id="bankStatement"
class="sample.spring.chapter03.beans.BankStatement"

 c:transactionDate =
"30-01-2012"

 c:amount = "1000"

 c:transactionType =
"Credit"

 c:referenceNumber =
"1110202" />

</beans>

In the
above example listing, c-namespace is specified via xmlns attribute. The bankStatement bean
definition makes use of the c prefix for the c-namespace to specify constructor arguments. The syntax followed for
specifying constructor arguments using c-namespace is similar to what we saw
in case of p-namespace.

NOTE
As c-namespace is implemented as part of Spring, there
is no schema
corresponding to c-namespace.
For this reason, you don’t see any schema reference corresponding to c-namespace in example listing 3-42. If you want
your IDE to autocomplete constructor argument names when using c-namespace, consider using IntelliJ IDEA or
SpringSource Tool Suite (STS).

If a
constructor argument is not a reference to another bean, it is specified using the following
syntax:

c:<constructor-argument-name>="<constructor-argument-value>"

here, <constructor-argument-name> is the name of the constructor argument, and <constructor-argument-value> is the value of the constructor argument.

If a
constructor argument is a reference to another bean, it is specified using the
following syntax:

c:<constructor-argument-name>-ref="<bean-reference>"

here, <constructor-argument-name> is the name of the constructor argument, and <bean-reference> is the id (or name) of the referenced bean. It is important to note that the
name of the constructor argument is followed by --ref. For instance, if a constructor
argument named myargument represents a reference to a bean with id ‘x’, you
specify myargument constructor argument as:

c:myargument-ref = "x"

As
mentioned earlier, if a class is compiled with debug flag enabled, constructor
argument names are preserved in the generated .class file. If the BankStatement
class is not compiled with the debug flag enabled, the configuration shown in
example listing 3-42 will not work. In such cases, you supply values for
constructor arguments using their index, as shown here:

Example listing 3-43 – Supplying values for constructor
arguments using their index

<beans
xmlns="http://www.springframework.org/schema/beans"

 xmlns:c="http://www.springframework.org/schema/c"

xsi:schemaLocation=".....">

 <bean id="bankStatement"
class="sample.spring.chapter03.beans.BankStatement"

 c:_0 =
"30-01-2012"

 c:_1 = "1000"

 c:_2 = "Credit"

 c:_3 = "1110202"
/>

</beans>

The above
example listing shows bean definition for the BankStatement class, which uses
constructor argument index instead of constructor arguments name to supply
values. It is important to note that the index of the constructor argument is
prefixed with an underscore because attribute names in XML cannot begin with a numeric value. If a constructor argument is a
reference to another bean, -ref must be added to the index of the constructor argument. For instance, if
the constructor argument at index 0 represents reference to another
bean, it is specified as c:_0-ref. Even though it’s possible to use a
combination of <constructor-arg> elements and c-namespace to specify constructor arguments, it’s recommended that
you choose one style of specifying constructor arguments and use it
consistently in bean definitions.

We saw
earlier how <list>, <map> and <set> elements are used to set properties or constructor arguments of
type List, Map and Set, respectively. Let’s now look at Spring’s util schema
that simplifies creating collection types, Properties type, constants, and so
on, and exposing them as a Spring beans.

3-8 Spring’s util schema

Spring’s util schema simplifies configuring beans by providing a concise way to
perform common configuration tasks. The following table describes the various
elements of util schema:

 	
 Element

 	
 Description

 	
 <list>

 	
 Creates a java.util.List type, and exposes it as a bean

 	
 <map>

 	
 Creates a java.util.Map type, and exposes it as a bean

 	
 <set>

 	
 Creates a java.util.Set type, and exposes it as a bean

 	
 <constant>

 	
 Exposes a public
 static field on a type as a bean

 	
 <property-path>

 	
 Exposes a bean property as a bean

 	
 <properties>

 	
 Creates a java.util.Properties from a properties file, and exposes it as a bean

NOTE
All the elements of Spring’s util
schema accept a scope
attribute that identifies whether the exposed bean is a singleton- or
prototype-scoped.

Spring
provides a FactoryBean interface that can be implemented to create a factory object
responsible for creating bean instances. Instead of using util schema’s
elements mentioned in the above table, you can use an out-of-the-box FactoryBean
implementation provided by Spring to perform the same functionality. In this
section, we’ll look at the util schema’s elements and the built-in FactoryBean implementations that you
can use instead of util schema’s elements.

IMPORT chapter 3/ch03-util-schema-examples (This project shows a Spring
application that makes use of Spring’s util schema elements to create shared
instances of List, Set, Map, and so on. To run
the application, execute the main method of the SampleApp class of this project)

Let’s
first look at the <list> element.

<list>

The <list>
element of Spring’s util schema is used for creating objects of type java.util.List,
as shown here:

Example listing 3-44 – applicationContext.xml - util schema’s <list> element

Project – ch03-util-schema-examples

Source location - src/main/resources/META-INF/spring

<beans
xmlns="http://www.springframework.org/schema/beans"

xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation=".....
http://www.springframework.org/schema/util

 http://www.springframework.org/schema/util/spring-util-4.0.xsd">

 <bean id="dataTypes"
class="sample.spring.chapter03.beans.DataTypesExample">

 <constructor-arg
name="listType" ref="listType" />

 </bean>

 <util:list id="listType"
list-class="java.util.ArrayList">

 <value>A simple String
value in list</value>

 <value>Another simple
String value in list</value>

 </util:list>

</beans>

First, you
need to include Spring’s util schema to access its elements. In the above example listing, the <list>
element of util schema creates an instance of java.util.ArrayList and exposes it as
a bean. The id attribute specifies the bean id with which the java.util.ArrayList instance is exposed, and list-class attribute specifies the
concrete implementation of java.util.List that you want to create. If you don’t specify the list-class
attribute, an instance of java.util.ArrayList is created by default. The <value> element of Spring’s beans schema
is used to specify individual elements of the list.

As util schema’s <list>
element exposes a List instance as a bean, you can refer to the exposed List instance
from other beans. For instance, in the above example listing, the listType
constructor argument (of type java.util.List) of DataTypesExample bean specifies listType as the value of the ref attribute to refer to the List instance created by the util schema’s <list>
element.

If you
compare the util schema’s <list> element shown in the above example listing with the beans schema’s
<list> element (refer example listing 3-27), you’ll notice that the util schema’s <list>
element gives you control over the List implementation to create. For
instance, if you want to create a Vector instead of an ArrayList
instance, specify java.util.Vector as the value of the list-class attribute.

Let’s now
look at Spring’s ListFactoryBean which you can use instead of util schema’s <list>
element.

ListFactoryBean

An
alternative to using util schema’s <list> element is Spring’s ListFactoryBean – a factory that is used for creating instances of java.util.List
and making them available as Spring beans.

The
following example listing shows how the ListFactoryBean can be used instead
of the util schema’s <list> element:

Example listing 3-45 – ListFactoryBean
example

<beans>

 <bean id="dataTypes"
class="sample.spring.chapter03.beans.DataTypesExample">

 <constructor-arg
name="listType" ref="listType" />

 </bean>

 <bean id="listType"
class=" org.springframework.beans.factory.config.ListFactoryBean">

 <property
name="sourceList">

 <list>

 <value>A simple
String value in list</value>

 <value>Another
simple String value in list</value>

 </list>

 </property>

 </bean>

</beans>

In the
above example listing, the sourceList property of ListFactoryBean specifies the elements in the list. By default, ListFactoryBean creates an instance of java.util.ArrayList. If you want the ListFactoryBean to create an instance of any other List implementation (like Vector), set
the ListFactoryBean’s targetListClass property. The targetListClass property specifies the fully-qualified name of the concrete
implementation class of java.util.List interface that should be created by the ListFactoryBean.

If you
compare example listings 3-44 and 3-45, you’ll notice that using util schema’s <list>
element is a lot simpler than using the ListFactoryBean to create a List instance
and expose it as a bean.

<map>

The <map>
element of Spring’s util schema is used for creating an object of type java.util.Map
and exposing it as a bean, as shown here:

Example listing 3-46 – applicationContext.xml - util schema’s <map> element

Project – ch03-util-schema-examples

Source location - src/main/resources/META-INF/spring

<beans

 xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation=".....
http://www.springframework.org/schema/util

 http://www.springframework.org/schema/util/spring-util-4.0.xsd">

 <bean id="dataTypes"
class="sample.spring.chapter03.beans.DataTypesExample">

 <constructor-arg
name="mapType" ref="mapType" />

 </bean>

 <util:map id="mapType"
map-class="java.util.TreeMap">

 <entry key="map key 1"
value="map key 1’s value"/>

 </util:map>

</beans>

In the
above example listing, util schema’s <map> element creates an instance of java.util.TreeMap and exposes it as a
bean. The id attribute specifies the id with which the bean is made available to
other beans, and map-class attribute specifies the fully-qualified name of the concrete
implementation class of java.util.Map
interface that should be created by the <map>
element. The <entry> element of Spring’s beans schema specifies a key-value pair in the created Map instance.

As the <map>
element exposes a Map instance as a bean, the exposed Map instance can be referenced from
other beans. For instance, in the above example listing, DataTypesExample’s mapType constructor argument (of type java.util.Map) specifies value of ref attribute
as mapType to refer to the TreeMap instance created by the <map> element.

NOTE
We saw earlier in this chapter that <key> and <value> sub-elements of <entry> are used to specify a key-value pair contained in the Map instance. The example listing 3-46 shows that
you can also specify a key-value pair contained in the Map instance by using <entry> element’s key and value
attributes.

If you
compare the util schema’s <map> element shown in the above example listing with the beans schema’s
<map> element in example listing 3-27, you’ll notice that the util schema’s <map>
element gives you control over the Map implementation to create. For
instance, if you want to use LinkedHashMap instead of TreeMap, specify java.util.LinkedHashMap as the value of map-class attribute. If you don’t specify the map-class attribute, Spring container
creates an instance of java.util.LinkedHashMap by default.

Let’s now
look at Spring’s MapFactoryBean that you can use instead of util schema’s <map>
element.

MapFactoryBean

Instead of
using util schema’s <map> element, you can use Spring’s MapFactoryBean – a factory that is
used for creating instances of java.util.Map and making them available as Spring beans.

The
following example listing shows how MapFactoryBean is used:

Example listing 3-47 – MapFactoryBean
example

<beans>

 <bean id="dataTypes"
class="sample.spring.chapter03.beans.DataTypesExample">

 <constructor-arg
name="mapType" ref="mapType" />

 </bean>

 <bean id="mapType"
class="org.springframework.beans.factory.config.MapFactoryBean">

 <property
name="sourceMap">

 <map>

 <entry
key="map key 1" value="map key 1’s value"/>

 </map>

 </property>

 </bean>

</beans>

In the
above example listing, MapFactoryBean’s sourceMap property specifies the key-value pairs contained in the Map instance
created by the MapFactoryBean. By default, MapFactoryBean creates an instance of java.util.LinkedHashMap. You can
control the Map instance created by MapFactoryBean by setting the
targetMapClass property. The targetMapClass
specifies the fully-qualified name of the concrete implementation class of java.util.Map
interface. For instance, if you specify java.util.HashMap as the value of targetMapClass,
MapFactoryBean creates an instance of java.util.HashMap.

If you
compare example listings 3-46 and 3-47, you’ll notice that using util schema’s <map>
element results in a more concise configuration than MapFactoryBean for creating Map instances.

<set>

The <set>
element of Spring’s util schema is used for creating an object of type java.util.Set
and exposing it as a bean, as shown here:

Example listing 3-48 – applicationContext.xml - util schema’s <set> element

Project – ch03-util-schema-examples

Source location - src/main/resources/META-INF/spring

<beans

 xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation=".....
http://www.springframework.org/schema/util

 http://www.springframework.org/schema/util/spring-util-4.0.xsd">

 <bean id="dataTypes"
class="sample.spring.chapter03.beans.DataTypesExample">

 <constructor-arg
name="setType" ref="setType" />

 </bean>

 <util:set id="setType"
set-class="java.util.HashSet">

 <value>Element
1</value>

 <value>Element
2</value>

 </util:set>

</beans>

In the
above example listing, util schema’s <set> element creates an instance of HashSet and exposes it as a Spring
bean with id as setType. The id attribute specifies the id with which the bean is made available to
other beans, and the set-class attribute specifies the concrete implementation class of java.util.Set
interface that should be created by the <set> element. The <value>
element of Spring’s beans schema specifies an element in the created Set instance.

The Set instance
created by the <set> element can be referenced from other beans. For instance, in the
above example listing, DataTypesExample’s setType constructor argument (of type java.util.Set) refers to the HashSet instance
created by the <set> element.

Instead of
using util schema’s <set> element, you can use Spring’s SetFactoryBean to create a Set instance
and expose it as a Spring bean.

SetFactoryBean

Spring’s SetFactoryBean is a factory object for creating instances of java.util.Set
type.

The
following example listing shows how you can use SetFactoryBean to perform the same
function as the util schema’s <set> element:

Example listing 3-49 – SetFactoryBean
example

<beans>

 <bean id="dataTypes"
class="sample.spring.chapter03.beans.DataTypesExample">

 <constructor-arg
name="setType" ref="setType" />

 </bean>

 <bean id="setType" class="org.springframework.beans.factory.config.SetFactoryBean">

 <property
name="sourceSet">

 <set>

 <value>Element
1</value>

 <value>Element
2</value>

 </set>

 </property>

 </bean>

</beans>

In the
above example listing, SetFactoryBean’s sourceSet property specifies the elements contained in the Set instance
created by the SetFactoryBean. SetFactoryBean’s targetSetClass property specifies the fully-qualified name of the class that
implements java.util.Set interface. If the targetSetClass property is specified, SetFactoryBean creates an instance of
the class specified by the targetSetClass property and makes it available as a Spring bean. For instance, if
you specify java.util.HashSet as the value of targetSetClass, SetFactoryBean creates an instance of java.util.HashSet. If the targetSetClass
property is unspecified, SetFactoryBean creates an instance of java.util.LinkedHashSet.

The above
example listing shows that using util schema’s <set>
element results in a more concise configuration than using SetFactoryBean
for creating Set instances.

<properties>

The util schema’s <properties> element is useful if you want to create an instance of java.util.Properties object from a properties file, and expose the java.util.Properties object as a bean.

The
following example listing shows how the <properties> element is used:

Example listing 3-50 – applicationContext.xml - util schema’s <properties> element

Project – ch03-util-schema-examples

Source location - src/main/resources/META-INF/spring

<beans

xmlns:util="http://www.springframework.org/schema/util"

xsi:schemaLocation=".....http://www.springframework.org/schema/util

 http://www.springframework.org/schema/util/spring-util-4.0.xsd">

 <bean id="bankDetails"
class="sample.spring.chapter03.beans.BankDetails">

 <property name="branchAddresses"
ref="branchAddresses" />

 </bean>

 <util:properties
id="branchAddresses"

location="classpath:META-INF/addresses.properties" />

</beans>

In the
above example listing, <properties> element creates an instance of java.util.Properties containing
properties loaded from the addresses.properties
file (specified by the location
attribute), and exposes the java.util.Properties instance as a bean with branchAddresses as the id (specified
by the id attribute). The above example listing also shows that the branchAddresses property (of type java.util.Properties) of BankDetails bean refers to the branchAddresses bean created by the util schema’s <properties> element.

An
alternative to using the <properties> element is Spring’s PropertiesFactoryBean.

PropertiesFactoryBean

Spring’s PropertiesFactoryBean is a factory for creating instances of java.util.Properties.

The
following example listing shows how you can use PropertiesFactoryBean to perform the
same function as the util schema’s <properties> element:

Example listing 3-51 – PropertiesFactoryBean
example

<beans>

 <bean id="bankDetails"
class="sample.spring.chapter03.beans.BankDetails">

 <property name="branchAddresses"
ref="branchAddresses" />

 </bean>

 <bean id="branchAddresses"

 class="org.springframework.beans.factory.config.PropertiesFactoryBean">

 <property
name="location"
value="classpath:META-INF/addresses.properties"/>

 </bean>

</beans>

In the
above example listing, bean definition for Spring’s PropertiesFactoryBean creates an instance of java.util.Properties from the
properties loaded from addresses.properties file (specified by location property), and exposes the java.util.Properties instance as a
bean with branchAddresses as the id.

<constant>

The util schema’s <constant> element is used for exposing an object’s public static
field as a Spring bean.

The
following example listing shows an example usage of <constant> element:

Example listing 3-52 – applicationContext.xml - util schema’s <constant> element

Project – ch03-util-schema-examples

Source location - src/main/resources/META-INF/spring

<beans xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation=".....
http://www.springframework.org/schema/util

 http://www.springframework.org/schema/util/spring-util-4.0.xsd">

 <bean id="dataTypes"
class="sample.spring.chapter03.beans.DataTypesExample">

 <constructor-arg
name="booleanType" ref="booleanTrue" />

 </bean>

 <util:constant
id="booleanTrue" static-field="java.lang.Boolean.TRUE"
/>

</beans>

The util schema’s <constant> element exposes the value specified by its static-field
attribute as a Spring bean. In the above example listing, <constant> element exposes a bean whose value is java.lang.Boolean.TRUE and id is booleanTrue. You can specify any public static field as the value of
the static-field attribute and refer to it from other beans in the Spring container.
For instance, in the above example listing, booleanType bean is referenced by DataTypesExample’s booleanType constructor argument of type boolean.

A rather
less concise way to expose public
static fields as Spring beans is to use Spring’s
FieldRetrievingFactoryBean.

FieldRetrievingFactoryBean

Spring’s FieldRetrievingFactoryBean is a factory for retrieving value of a public static field specified by the FieldRetrievingFactoryBean’s staticField property. The value retrieved by the FieldRetrievingFactoryBean is exposed
as a bean. You can also use the FieldRetrievingFactoryBean
to retrieve a non-static field value.

The following
example listing shows an example usage of FieldRetrievingFactoryBean:

Example listing 3-53 – FieldRetrievingFactoryBean
example

<beans>

 <bean id="dataTypes"
class="sample.spring.chapter03.beans.DataTypesExample">

 <constructor-arg
name="booleanType" ref="booleanTrue" />

 </bean>

 <bean id="booleanTrue"

 class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">

 <property
name="staticField" value=" java.lang.Boolean.TRUE"/>

 </bean>

</beans>

In the
above example listing, FieldRetrievingFactoryBean retrieves the value of java.lang.Boolean.TRUE field and
exposes it as a bean. The bean exposed by the FieldRetrievingFactoryBean is
referenced by DataTypesExample’s booleanType constructor argument of type boolean.

<property-path>

The util schema’s <property-path> element is used to expose a bean property value as a bean.

The
following example listing shows an example usage of <property-path> element:

Example listing 3-54 – applicationContext.xml - util schema’s <property-path> element

Project – ch03-util-schema-examples

Source location - src/main/resources/META-INF/spring

<beans

xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation=".....
http://www.springframework.org/schema/util

http://www.springframework.org/schema/util/spring-util-4.0.xsd">

 <bean id="bankDetails"
class="sample.spring.chapter03.beans.BankDetails">

 <property
name="dateOfInception" ref="dateType" />

 </bean>

 <util:property-path
id="dateType" path="dataTypes.dateType" />

 <bean id="dataTypes"
class="sample.spring.chapter03.beans.DataTypesExample">

 <property name="dateType"
value="30-01-2012" />

 </bean>

</beans>

In the
above example listing, DataTypesExample’s dateType property (of type java.util.Date) value is specified as ‘30-01-2012’. The <property-path> element retrieves the DataTypesExample’s dateType
property and exposes it as a bean with id as dateType. The path attribute
of <property-path> element has the following syntax:

<bean-name>.<bean-property>

Here, <bean-name> is the id or name of the bean, and <bean-property> is the name of the property.

As <property-path> element exposes a bean, the exposed bean can be referenced by other
beans in the Spring container. For instance in the above example listing, dateType bean
is referenced by dateOfInception property of BankDetails bean.

Instead of
using <property-path> element, you can use Spring’s PropertyPathFactoryBean to expose a
bean property value as a bean.

PropertyPathFactoryBean

PropertyPathFactoryBean is a factory
used for creating bean instances that represent a bean property value.

The
following example listing shows how to use PropertyPathFactoryBean:

Example listing 3-55 – PropertyPathFactoryBean
example

<beans

xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation=".....
http://www.springframework.org/schema/util

http://www.springframework.org/schema/util/spring-util-4.0.xsd">

 <bean id="bankDetails"
class="sample.spring.chapter03.beans.BankDetails">

 <property
name="dateOfInception" ref="dateType" />

 </bean>

 <bean id="dataType"

 class="org.springframework.beans.factory.config.PropertyPathFactoryBean">

 <property name="targetBeanName"
value="dataTypes"/>

 <property
name="propertyPath" value="dateType"/>

 </bean>

 <bean id="dataTypes"
class="sample.spring.chapter03.beans.DataTypesExample">

 <property name="dateType"
value="30-01-2012" />

 </bean>

</beans>

In the
above example listing, PropertyPathFactoryBean is used to create an instance of a bean that represents the value
of dateType property of dataTypes bean. PropertyPathFactoryBean’s targetBeanName attribute specifies the id or name of the bean that contains
the property, and
PropertyPathFactoryBean’s propertyPath
attribute specifies the name of the property whose value is to be exposed as a
bean. The bean instance created by PropertyPathFactoryBean can be
accessed by other beans in the Spring container. In the above example listing,
the dataType bean created by PropertyPathFactoryBean
is referenced by dateOfInception property (of type java.util.Date)
of BankDetails bean.

Now, that
we have taken an in-depth look at util schema elements, let’s look at
Spring’s FactoryBean interface.

3-9 FactoryBean interface

Spring’s FactoryBean
interface is implemented by classes that act as a factory for creating bean
instances. In the previous section, we saw that the classes that implement the FactoryBean
interface are configured in the application context XML file like any other
bean. FactoryBean is particularly useful if you want to perform complicated
conditional checks to decide on which bean type to create, and to execute
complex bean initialization logic.

Let’s now
look at an application scenario in which we’ll use FactoryBean
for selecting a bean type, and then creating it.

MyBank
application – Storing events in the database

In MyBank application, important events, like credit and debit
transactions, open and liquidate fixed deposits, and so on, are saved in the
database. MyBank may directly save these events in the database or indirectly
by first sending the events to a messaging middleware or a web service. The
following table describes the classes that are defined by the MyBank
application for directly or indirectly saving events:

 	
 Class

 	
 Description

 	
 DatabaseEventSender

 	
 Class that contains the functionality for saving events in the
 database

 	
 MessagingEventSender

 	
 Class that contains the functionality for sending events to a
 messaging middleware

 	
 WebServiceEventSender

 	
 Class that contains the functionality for sending events to a
 remote web service

The
decision to directly save the events in the database or to send them to a
messaging middleware or a web service is based on configuration. For instance,
if MyBank finds that there exists a database.properties file, MyBank
reads the configuration information (like database url, username and password)
from the database.properties file and creates the DatabaseEventSender instance.
Similarly, if a messging.properties file exists, MyBank creates an instance of MessagingEventSender instance, and if a webservice.properties file exists, an instance of WebServiceEventSender is created.

Initializing
DatabaseEventSender, MessagingEventSender and WebServiceEventSender instances may require executing complex initialization logic. For
instance, you need to create (or obtain from JNDI) javax.jms.ConnectionFactory and javax.jms.Destination instances and set them on the MessagingEventSender instance so that
the MessagingEventSender can send JMS messages to the messaging middleware.

The
following class diagram shows that the FixedDepositServiceImpl class of MyBank
uses either DatabaseEventSender or MessagingEventSender or WebServiceEventSender instance to directly or indirectly save events related to fixed
deposits in the database:

Figure 3-7 FixedDepositServiceImpl class uses one of the implementations of EventSender
interface.

In the
above class diagram, sendEvent method of EventSender interface defines the contract for directly or indirectly saving
events in the database. DatabaseEventSender, MessagingEventSender and WebServiceEventSender classes implement the EventSender interface and provide an
appropriate implementation for the sendEvent method.

Let’s now
look at how FactoryBean simplifies choosing the right implementation of EventSender
interface and initializing it.

IMPORT chapter 3/ch03-bankapp-factorybean (This project shows the MyBank
application that uses a FactoryBean implementation to create objects of type EventSender.
To run the application, execute the main method of the BankApp class
of this project)

MyBank – FactoryBean example

In MyBank,
selecting the right EventSender implementation and initializing it is an involved task; therefore,
it represents an ideal scenario for using a FactoryBean implementation. FactoryBean
interface defines the following methods that you need to implement:

·
getObjectType: returns the type of the object managed by the FactoryBean implementation. In case
of MyBank, the FactoryBean implementation creates and returns objects of type EventSender.

·
getObject: returns the object managed by the FactoryBean implementation. In case
of MyBank, the getObject method returns an instance of DatabaseEventSender or MessagingEventSender or WebServiceEventSender.

·
isSingleton: returns true if the FactoryBean implementation is a factory for singleton-scoped objects. If the isSingleton
method returns true, the object returned by the getObject method is cached by the
Spring container and the same instance is returned on subsequent requests. If
the FactoryBean implementation is a factory for prototype-scoped objects, return false from the
isSingleton method. If the isSingleton method returns false, a fresh instance is created by getObject method on every request. In
case of MyBank, FactoryBean implementation returns an instance of DatabaseEventSender or MessagingEventSender or WebServiceEventSender
class. Once created, the same instance is used
throughout the lifetime of the MyBank application; therefore, the isSingleton
method returns true in case of MyBank.

The
following example listing shows the EventSenderFactoryBean – the FactoryBean
implementation that creates and returns objects of type EventSender:

Example listing 3-56 – EventSenderFactoryBean
class

Project – ch03-bankapp-factorybean

Source location - src/main/java/sample/spring/chapter03/bankapp/event

package sample.spring.chapter03.bankapp.event;

import
org.springframework.beans.factory.FactoryBean;

import
org.springframework.beans.factory.FactoryBeanNotInitializedException;

import
org.springframework.core.io.ClassPathResource;

.....

public class EventSenderFactoryBean
implements FactoryBean<EventSender> {

 private String databasePropertiesFile;

 private String
webServicePropertiesFile;

 private String messagingPropertiesFile;

 public EventSender getObject() throws
Exception {

 EventSender eventSender = null;

 Properties properties = new
Properties();

 ClassPathResource databaseProperties
= null;

 if(databasePropertiesFile != null)
{

 databaseProperties = new
ClassPathResource(databasePropertiesFile);

 }

 if (databaseProperties != null
&& databaseProperties.exists()) {

 InputStream inStream =
databaseProperties.getInputStream();

 properties.load(inStream);

 eventSender = new DatabaseEventSender(properties);

 }

 else if (webServiceProperties !=
null && webServiceProperties.exists()) {.....}

 else if (messagingProperties !=
null && messagingProperties.exists()) {.....}

 return eventSender;

 }

 public Class<?> getObjectType() {

 return EventSender.class;

 }

 public boolean isSingleton() {

 return true;

 }

}

The above
example listing shows that the EventSenderFactoryBean implements FactoryBean interface. The EventSender parameter in FactoryBean<EventSender> indicates that the FactoryBean’s getObject returns objects of type EventSender. The databasePropertiesFile, webServicePropertiesFile and messagingPropertiesFile are properties of the EventSenderFactoryBean class, and
they represent the location of database.properties, webservice.properties and messaging.properties
files in the classpath.

The getObject
method uses Spring’s ClassPathResource class to verify whether the specified properties file exists in the
classpath or not. If the properties file exists, properties from that file are
loaded and passed as to the EventSender implementation class’s constructor. For instance, in the above
example listing, if database.properties file (represented by databasePropertiesFile property)
exists, properties are loaded from the database.properties file and passed
as an argument to the DatabaseEventSender’s constructor. The getObjectType method returns EventSender type because the EventSenderFactoryBean’s getObject method returns objects of type EventSender. The isSingleton
method returns true, which means that the object returned by getObject
method is cached by Spring and the same instance is returned every time EventSenderFactoryBean’s getObject method is invoked.

Now, that
you have seen how EventSenderFactoryBean class is implemented in the MyBank, you can guess how Spring’s
built-in FactoryBean implementations, like ListFactoryBean (for creating instances
of List type), MapFactoryBean (for creating instances of Map type), SetFactoryBean
(for creating instances of Set type), and so on, are implemented.

The
following example listing shows how EventSenderFactoryBean is configured
in the application context XML file:

Example listing 3-57 – applicationContext.xml - EventSenderFactoryBean configuration

Project – ch03-bankapp-factorybean

Source location - src/main/resources/META-INF/spring

<beans>

 <bean id="service"

class="sample.spring.chapter03.bankapp.service.FixedDepositServiceImpl">

 <property
name="eventSender" ref="eventSenderFactory" />

 </bean>

 <bean
id="eventSenderFactory"

 class="sample.spring.chapter03.bankapp.event.EventSenderFactoryBean">

 <property
name="databasePropertiesFile"
value="META-INF/config/database.properties"/>

 </bean>

</beans>

The above
example listing shows that the EventSenderFactoryBean is configured like any other Spring bean. Even though a FactoryBean
implementation is configured like any other Spring bean, it is treated differently by the Spring container. One of the most important differences is
that if a bean is dependent on a FactoryBean implementation, the
Spring container invokes the getObject method of the FactoryBean implementation and injects the returned object into the dependent
bean.

NOTE You should note that FactoryBean’s getObject method is invoked only once by the Spring container if the
isSingleton method returns true.

In the
above example listing, bean definition for the FixedDepositServiceImpl class shows
that it is dependent on the EventSenderFactoryBean – a FactoryBean implementation. So, the Spring container invokes the EventSenderFactoryBean’s getObject method and injects the returned EventSender object into the FixedDepositServiceImpl instance.

The
following example listing shows the FixedDepositServiceImpl class that
requires EventSender instance created by EventSenderFactoryBean:

Example listing 3-58 – FixedDepositServiceImpl class

Project – ch03-bankapp-factorybean

Source location - src/main/java/sample/spring/chapter03/bankapp/service

package
sample.spring.chapter03.bankapp.service;

import
sample.spring.chapter03.bankapp.event.EventSender;

public class FixedDepositServiceImpl
implements FixedDepositService {

 private EventSender eventSender;

 public void setEventSender(EventSender
eventSender) {

 this.eventSender = eventSender;

 }

 public void
createFixedDeposit(FixedDepositDetails fixedDepositDetails) {

 eventSender.sendEvent(event);

 }

}

The above
example listing shows that the FixedDepositServiceImpl class depends on an EventSender instance and not on the EventSenderFactoryBean instance. The Spring container obtains the EventSender
instance by invoking EventSenderFactoryBean’s getObject method, and injects the obtained EventSender instance into the FixedDepositServiceImpl instance.

Let’s now
look at how to access the FactoryBean itself and not the bean it creates and returns via the getObject
method.

Accessing the
FactoryBean instance

If you
want to obtain the FactoryBean itself from the Spring container, prefix the name (or id) of the
factory bean with ampersand ‘&’.

Let’s say
that the FixedDepositServiceImpl class requires access to the EventSenderFactoryBean itself, as
shown here:

Example listing 3-59 – FixedDepositServiceImpl class that depends on the EventSenderFactoryBean itself

package
sample.spring.chapter03.bankapp.service;

import
sample.spring.chapter03.bankapp.event.EventSenderFactoryBean;

import
sample.spring.chapter03.bankapp.event.EventSender;

public class FixedDepositServiceImpl
implements FixedDepositService {

 private EventSenderFactoryBean
eventSenderFactoryBean;

 public void setEventSenderFactoryBean
(EventSenderFactoryBean eventSenderFactoryBean) {

 this. eventSenderFactoryBean = eventSenderFactoryBean;

 }

 public void
createFixedDeposit(FixedDepositDetails fixedDepositDetails) {

 EventSender eventSender =
eventSenderFactoryBean.getObject();

 evenSender.sendEvent(event);

 }

}

In the
above example listing, the FixedDepositServiceImpl class depends on the EventSenderFactoryBean itself, and
uses its getObject method to obtain an instance of EventSender object.

We saw in
example listing 3-57 that when you define the EventSenderFactoryBean bean as a
dependency of FixedDepositServiceImpl bean, the Spring container invokes the getObject
method of EventSenderFactoryBean and injects the returned EventSender object into the FixedDepositServiceImpl bean. To instruct the Spring container to inject the EventSenderFactoryBean itself, add ampersand ‘&’ prefix to the id (or name) of the
bean specified by the ref attribute, as shown in the following example listing:

Example listing 3-60 – Injecting the EventSenderFactoryBean instance into the FixedDepositServiceImpl bean

<beans>

 <bean id="service" class="sample.spring.chapter03.bankapp.service.FixedDepositServiceImpl">

 <property name="eventSenderFactoryBean"
ref="&eventSenderFactory" />

 </bean>

 <bean id="eventSenderFactory"

class="sample.spring.chapter03.bankapp.event.EventSenderFactoryBean">

 <property
name="databasePropertiesFile"
value="META-INF/config/database.properties"/>

 </bean>

</beans>

In the
above example listing, the following <property> element specifies
that the FixedDepositServiceImpl bean is dependent on EventSenderFactoryBean:

<property
name="eventSenderFactoryBean"
ref="&eventSenderFactory" />

Notice
that the ref attribute’s value is "&eventSenderFactory". The &
prefix instructs the Spring container to inject the EventSenderFactoryBean instance itself into the FixedDepositServiceImpl bean.

The use of
ampersand ‘&’ is also required when you want to retrieve the FactoryBean
instance itself using ApplicationContext’s getBean method. The following example listing shows the BankApp class
of MyBank application that retrieves the EventSender object created by the EventSenderFactoryBean, and the EventSenderFactoryBean instance
itself:

Example listing 3-61 – BankApp class

Project – ch03-bankapp-factorybean

Source location - src/main/java/sample/spring/chapter03/bankapp

package sample.spring.chapter03.bankapp;

.....

public class BankApp {

 private static Logger logger =
Logger.getLogger(BankApp.class);

 public static void main(String args[])
{

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 logger.info("Invoking
getBean(\"eventFactory\") returns : " +

context.getBean("eventSenderFactory"));

 logger.info("Invoking
getBean(\"&eventFactory\") returns : " +

context.getBean("&eventSenderFactory"));

 }

}

If you
execute the main method of the BankApp class shown above, you’ll find that calling getBean("eventSenderFactory") returns an instance of DatabaseEventSender class, and getBean("&eventSenderFactory") returns EventSenderFactoryBean instance.

3-10 Summary

In this
chapter, we saw how you can use bean definition inheritance to create less
verbose and easily manageable bean definitions. The majority of this chapter
focused on how to set different types of bean properties and constructor
arguments using built-in FactoryBean implementations, Spring’s util schema, and p- and c-namespaces.
We also looked at some of the built-in PropertyEditor implementations in
Spring and how to register additional property editors with the Spring
container. In the next chapter, we’ll take an in-depth look at dependency injection
feature of Spring.

Chapter 4 - Dependency injection

4-1
Introduction

In the
previous chapter, we looked at how to configure beans using Spring’s util schema, p- and c-namespaces, FactoryBean implementations,
and so on. In this chapter we focus on different dependency injection scenarios
which we typically come across in real world application development efforts
and how Spring addresses these scenarios.

We’ll
begin this chapter with a look at inner beans - an
alternative to using the ref attribute of <property> and <constructor-arg> elements. We’ll then look at depends-on attribute of the <bean>
element. In the second half of this chapter, we’ll look at issues that may
arise when singleton- and prototype-scoped beans collaborate to provide
application behavior. We’ll wrap this chapter with an in-depth look at Spring’s
autowiring feature.

IMPORT chapter 4/ch04-bankapp-dependencies (This project shows usage of inner beans
and <bean> element’s depends-on attribute. This project also shows implications of defining
dependence of singleton-scoped beans on prototype-scoped beans, and vice versa.
To run the application, execute the main method of the BankApp class
of this project)

4-2 Inner
beans

If a
dependency of a bean is not shared by multiple beans, you can consider defining the dependency
as an inner
bean. An inner bean is defined inside a <property> or <constructor-arg> element by using the <bean> element of Spring’s beans schema.
You should note that an inner bean is only accessible to the bean definition
enclosing it, and not to other beans registered with the Spring container.

The
following example listing shows how we generally represent bean dependencies:

Example listing 4-1 – Dependency specified using <property> element’s ref attribute

 <bean id="service"

 class="sample.spring.chapter04.bankapp.service.FixedDepositServiceImpl">

 <property
name=“fixedDepositDao" ref="dao" />

 </bean>

 <bean id="dao"
class="sample.spring.chapter04.bankapp.dao.FixedDepositDaoImpl" />

The above
example listing shows that the service bean is dependent on dao bean. If service bean
is the only bean that is dependent on the dao bean, then you can define the dao bean as an
inner
bean of service bean.

Example listing 4-2 – applicationContext.xml - Inner bean example

Project
– ch04-bankapp-dependencies

Source location -
src/main/resources/META-INF/spring

 <bean id="service"

 class="sample.spring.chapter04.bankapp.service.FixedDepositServiceImpl">

 <property
name=“fixedDepositDao">

 <bean
class="sample.spring.chapter04.bankapp.dao.FixedDepositDaoImpl" />

 </property>

 </bean>

In the
above example listing, the bean definition for the FixedDepositDaoImpl class is inside the <property> element of service bean. If you compare the above example listing with 4-1, you’ll
notice that the <property> element no longer specifies the ref attribute, and the <bean>
element corresponding to FixedDepositDaoImpl class doesn’t have the id attribute anymore.

The <bean>
element corresponding to an inner bean definition doesn’t specify an id attribute
because an inner bean is not registered with the Spring container. If you specify an id attribute
for an inner bean definition, it is ignored by the Spring container. An inner
bean is always prototype-scoped; therefore, if the <bean> element corresponding to
an inner bean definition specifies the scope attribute, then it is ignored
by the Spring container. It is important to note that an inner bean is anonymous in nature, and it’s not accessible to other beans (except the bean
that contains the inner bean definition) in the Spring container.

NOTE As in case of normal bean definition, you can
use <property>, <constructor-arg>, and so on, elements inside the <bean> element of the inner bean definition.

In the
previous chapter, we saw that Spring’s util schema elements are used to
create beans that represent a List, Set, Map, and so on. We saw that the beans created by Spring’s util schema
elements are referenced by other beans. The concept of inner beans makes it
possible to use Spring’s util schema elements inside <property> and <constructor-arg> elements also, as shown in the following example listing:

Example listing 4-3 – util schema’s <list> element defines an inner bean

<beans
xmlns="http://www.springframework.org/schema/beans"

xmlns:util="http://www.springframework.org/schema/util"

xsi:schemaLocation="..... http://www.springframework.org/schema/util

http://www.springframework.org/schema/util/spring-util-4.0.xsd">

 <bean id="someBean"
class="com.sample.SomeBean">

 <constructor-arg
name="listType">

 <util:list
list-class="java.util.ArrayList">

 <value>A simple
String value in list</value>

 <value>Another
simple String value in list</value>

 </util:list>

 </constructor-arg>

 </bean>

</beans>

In the
above example listing, the listType constructor argument is of type java.util.List. The value passed to
the listType constructor argument is specified by the util schema’s <list>
element. Note that we didn’t specify the id attribute of the <list>
element because Spring container ignores ids of inner beans.

Let’s now
look at depends-on attribute of <bean> element.

4-3
Explicitly controlling the bean initialization order with depends-on attribute

In section
1-4 of chapter 1, we discussed that beans are created in the order in which
they are defined in the application context XML file. The order in which beans
are created is also decided based on the inter-dependencies of beans. For
instance, if bean A accepts an instance of bean B as a constructor argument,
the Spring container will create bean B before
bean A irrespective of the order in which they are defined in the application
context XML file. This behavior of the Spring container ensures that the
dependencies of a bean (bean B is a dependency in our example) are completely
configured before they are injected into the dependent bean (bean A is a
dependent bean in our example).

In some
application scenarios, bean dependencies are not explicitly specified via <property> and <constructor-arg> elements. If the bean dependencies are not
explicit, you can use <bean> element’s depends-on attribute to explicitly specify dependencies of a bean. Spring
container ensures that bean dependencies specified by the depends-on
attribute are initialized before the bean that specifies the depends-on attribute.

Let’s now
look at an example scenario in which depends-on attribute is used to
control the initialization order of beans.

MyBank –
implied dependencies between beans

In the MyBank
application of the previous chapter, a FactoryBean implementation created an
EventSender object that was used by the FixedDepositServiceImpl instance to directly
or indirectly store events in the database (refer section 3-9 of chapter 3 for
details). Let’s say that instead of using a FactoryBean implementation for
creating an EventSender implementation, the approach shown in the following diagram is
adopted:

Figure 4-1 – EventSenderSelectorServiceImpl class writes the name of the EventSender implementation in the appConfig.properties file, which is later read by the FixedDepositServiceImpl instance

The above
diagram shows that:

·
an EventSenderSelectorServiceImpl class
is used to decide on the EventSender implementation (DatabaseEventSender or WebServiceEventSender or MessagingEventSender) to be used by the FixedDepositServiceImpl class

·
EventSenderSelectorServiceImpl class stores the fully-qualified name of the EventSender
implementation in the appConfig.properties file

·
FixedDepositServiceImpl class reads the fully-qualified name of the EventSender
implementation from the appConfig.properties file, creates the EventSender
object and uses it for storing fixed deposit
events in the database

The above
approach suggests that the FixedDepositServiceImpl instance won’t work correctly if EventSenderSelectorServiceImpl fails
to save the fully-qualified name of the EventSender implementation in the appConfig.properties file. This means that the FixedDepositServiceImpl class is
implicitly dependent on the EventSenderSelectorServiceImpl class.

Let’s now
look at the implication of implicit dependence of FixedDepositServiceImpl instance on the EventSenderSelectorServiceImpl instance.

Implicit
dependency problem

Consider
the following application context XML file that contains bean definitions for FixedDepositServiceImpl and EventSenderSelectorServiceImpl
classes:

Example listing 4-4 – applicationContext.xml - Implicit dependency example

Project
– ch04-bankapp-dependencies

Source location -
src/main/resources/META-INF/spring

<beans>

 <bean id="service"

 class="sample.spring.chapter04.bankapp.service.FixedDepositServiceImpl">

 <constructor-arg
index="0" value="META-INF/config/appConfig.properties"
/>

 </bean>

 <bean
id="eventSenderSelectorService"

class="sample.spring.chapter04.bankapp.service.EventSenderSelectorServiceImpl">

 <constructor-arg
index="0" value="META-INF/config/appConfig.properties"
/>

 </bean>

</beans>

The above
application context XML file shows that both FixedDepositServiceImpl and EventSenderSelectorServiceImpl class’s constructor accept location of the appConfig.properties file. The EventSenderSelectorServiceImpl instance uses the appConfig.properties file for communicating the fully-qualified name of the EventSender
implementation class to the FixedDepositServiceImpl instance. As an explicit dependence doesn’t exist between service and eventSenderSelectorService beans, Spring container creates their instances in the order in
which they are defined in the application context XML file. As the service bean
is defined before the eventSenderSelectorService bean, FixedDepositServiceImpl instance is created before EventSenderSelectorServiceImpl instance. We’ll soon see that if FixedDepositServiceImpl instance is created before EventSenderSelectorServiceImpl instance, the FixedDepositServiceImpl instance will not be able to read the name of the fully-qualified EventSender
implementation class from the appConfig.properties file.

Let’s now
take an in-depth look at the EventSenderSelectorServiceImpl
and FixedDepositServiceImpl classes, and
the appConfig.properties file.

EventSenderSelectorServiceImpl – the
writer

The
following example listing shows the EventSenderSelectorServiceImpl class:

Example listing 4-5 – EventSenderSelectorServiceImpl
class

Project
– ch04-bankapp-dependencies

Source location -
src/main/java/sample/spring/chapter04/bankapp/service

package sample.spring.chapter04.bankapp.service;

import
org.springframework.core.io.ClassPathResource;

import sample.spring.chapter04.bankapp.Constants;

public class EventSenderSelectorServiceImpl
{

 public
EventSenderSelectorServiceImpl(String configFile) throws Exception {

 ClassPathResource resource = new
ClassPathResource(configFile);

 OutputStream os = new
FileOutputStream(resource.getFile());

 Properties properties = new
Properties();

 properties

 .setProperty(Constants.EVENT_SENDER_CLASS_PROPERTY,

 "sample.spring.chapter04.bankapp.event.DatabaseEventSender");

 properties.store(os, null);

 }

}

The above
example listing shows that the location of appConfig.properties file is passed
as a constructor argument to the EventSenderSelectorServiceImpl
class’s constructor. The EventSenderSelectorServiceImpl class’s constructor writes a property named eventSenderClass (which is the value of EVENT_SENDER_CLASS_PROPERTY constant
defined in the Constants class) to the appConfig.properties file. The eventSenderClass property specifies the fully-qualified name of the EventSender
implementation to be used by the FixedDepositServiceImpl instance for
directly or indirectly saving events in the database. For the sake of
simplicity, EventSenderSelectorServiceImpl class’s constructor sets the fully-qualified name of the DatabaseEventSender class as the value of eventSenderClass property.

appConfig.properties

The
following is the entry that gets added to the appConfig.properties file by
EventSenderSelectorServiceImpl class:

eventSenderClass=sample.spring.chapter04.bankapp.event.DatabaseEventSender

FixedDepositServiceImpl – the
reader

The eventSenderClass property written by the EventSenderSelectorServiceImpl
instance is read by the FixedDepositServiceImpl instance, as shown in the following example listing:

Example listing 4-6 – FixedDepositServiceImpl class

Project
– ch04-bankapp-dependencies

Source location -
src/main/java/sample/spring/chapter04/bankapp/service

package sample.spring.chapter04.bankapp.service;

import
org.springframework.core.io.ClassPathResource;

import sample.spring.chapter04.bankapp.Constants;

public class FixedDepositServiceImpl
implements FixedDepositService {

 private FixedDepositDao fixedDepositDao;

 private EventSender eventSender;

 public FixedDepositServiceImpl(String
configFile) throws Exception {

 ClassPathResource configProperties =
new ClassPathResource(configFile);

 if (configProperties.exists()) {

 InputStream inStream =
configProperties.getInputStream();

 Properties properties = new
Properties();

 properties.load(inStream);

 String eventSenderClassString =

 properties.getProperty(Constants.EVENT_SENDER_CLASS_PROPERTY);

 if (eventSenderClassString !=
null) {

 Class<?>
eventSenderClass = Class.forName(eventSenderClassString);

 eventSender = (EventSender)
eventSenderClass.newInstance();

 logger.info("Created
EventSender class");

 } else {

 logger.info("appConfig.properties
file doesn't contain the information " +

"about EventSender class");

 }

 }

 }

 public void createFixedDeposit(FixedDepositDetails
fixedDepositDetails) throws Exception {

 eventSender.sendEvent(event);

 }

}

The above
example listing shows following sequence of actions are performed by the
constructor of FixedDepositServiceImpl class:

·
loads properties from the appConfig.properties file. The configFile constructor argument represents the location of the appConfig.properties file.

·
obtains property named eventSenderClass (represented by EVENT_SENDER_CLASS_PROPERTY constant defined in the Constants class) from the properties
loaded from the appConfig.properties file. The value of eventSenderClass property is the fully-qualified name of the EventSender
implementation class that FixedDepositServiceImpl needs to use. The value of eventSenderClass property is stored
in the eventSenderClassString local variable.

·
creates an instance of the EventSender
implementation class whose fully-qualified name is stored in the eventSenderClassString variable, and stores the newly created instance into an instance
variable named eventSender. The eventSender variable is later used by the FixedDepositServiceImpl’s createFixedDeposit method (refer to the createFixedDeposit method in the
above example listing) to directly or indirectly store events in the database.

You should
note that if a property named eventSenderClass is not found in the appConfig.properties
file, the eventSenderClassString variable is not set. In this case, the FixedDepositServiceImpl’s constructor
prints the following message on the console: ‘appConfig.properties file doesn't
contain the information about EventSender class’.

In example
listing 4-4, we looked at bean definitions for EventSenderSelectorServiceImpl and FixedDepositServiceImpl classes, and concluded that the FixedDepositServiceImpl instance is
created before EventSenderSelectorServiceImpl
instance because Spring container initializes
beans in the order in which they appear in the application context XML file. We
saw in example listing 4-5 that the creation of EventSenderSelectorServiceImpl
instance results in writing an eventSenderClass property to the appConfig.properties file. So, if the FixedDepositServiceImpl instance is created before the EventSenderSelectorServiceImpl instance, the FixedDepositServiceImpl instance will not find any eventSenderClass property in the appConfig.properties file. This shows that the FixedDepositServiceImpl class is implicitly dependent on the EventSenderSelectorServiceImpl class; therefore, the EventSenderSelectorServiceImpl instance
must be created before the FixedDepositServiceImpl instance.

How to address
implicit dependency problem?

We can
solve the implicit dependency problem in two ways:

·
we change the order in which bean definitions
for EventSenderSelectorServiceImpl
and FixedDepositServiceImpl classes are
defined in the application context XML file. If the bean definition for the EventSenderSelectorServiceImpl class appears before the bean definition for the FixedDepositServiceImpl class, the EventSenderSelectorServiceImpl instance will be created before
the FixedDepositServiceImpl instance.

·
use <bean> element’s depends-on
attribute to explicitly specify that the service bean (corresponding to the FixedDepositServiceImpl class) is dependent on the eventSenderSelectorService bean
(corresponding to the EventSenderSelectorServiceImpl class).

The
following example listing shows the usage of <bean> element’s depends-on
attribute:

Example listing 4-7 – <bean>
element’s depends-on attribute

<beans>

 <bean id="service"

 class="sample.spring.chapter04.bankapp.service.FixedDepositServiceImpl"

 depends-on="eventSenderSelectorService">

 </bean>

 <bean
id="eventSenderSelectorService"

class="sample.spring.chapter04.bankapp.service.EventSenderSelectorServiceImpl">

 </bean>

</beans>

In the
above example listing, the service bean uses depends-on attribute to explicitly specify that it is dependent on the eventSenderSelectorService bean. The depends-on attribute specifies the ids or names of the beans on which the bean
is dependent. As the service bean specifies that it is dependent on the eventSenderSelectorService bean, Spring container creates eventSenderSelectorService bean (corresponding
to the
EventSenderSelectorServiceImpl class) instance before service bean
(corresponding to the FixedDepositServiceImpl class) instance.

NOTE
If you execute the main
method of the BankApp class of ch04-bankapp-dependencies project, you’ll find that the FixedDepositServiceImpl instance is created before EventSenderSelectServiceImpl instance. For this reason, the following message is printed
on the console: ‘appConfig.properties file doesn't contain the information about
EventSender class’.

Multiple implicit dependencies

If a bean
has multiple implicit dependencies, you can specify ids or names of all those
dependencies as the value of depends-on attribute, as shown here:

Example listing 4-8 – depends-on attribute example - multiple implicit dependencies

<beans>

 <bean id="abean" depends-on="bBean,
cBean">

 </bean>

</beans>

The above
example listing shows that you can specify multiple bean ids or names as the
value of depends-on attribute.

depends-on attribute and bean
definition inheritance

It is
important to note that the depends-on attribute is not inherited by child bean definitions. The following example listing
shows an abstract serviceTemplate parent bean definition that uses the depends-on attribute to specify baseService bean
as a dependency:

Example listing 4-9 – depends-on attribute – bean definition inheritance

 <bean id="serviceTemplate"
class=".....ServiceTemplate" depends-on="baseService"

 abstract="true"/>

 <bean id="someService"
class=".....SomeServiceImpl" parent="serviceTemplate"/>

 <bean
id="someOtherService" class=".....SomeOtherServiceImpl" parent="serviceTemplate"/>

 <bean id="baseService"
class=".....BaseServiceImpl" />

In the
above example listing, someService and someOtherService child bean definitions don’t inherit the depends-on
attribute from the serviceTemplate parent bean definition. As the Spring container creates beans in
the order in which they are defined in the application context XML file, the baseService
bean is created after the creation of someService and someOtherService beans.

Let’s now
look at how the Spring container manages dependencies of singleton- and
prototype-scoped beans.

4-4
Singleton- and prototype-scoped bean’s dependencies

A
singleton-scoped bean (and its singleton-scoped dependencies) is created when
the ApplicationContext instance is created. And, a prototype-scoped bean (and its
prototype-scoped dependencies) is created each time ApplicationContext’s getBean method is invoked to obtain the prototype-scoped bean.

If a
singleton-scoped bean is dependent on a prototype-scoped bean, or vice versa,
things get a bit complicated. For instance, if a singleton-scoped bean is
dependent on a prototype-scoped bean, you might ask the question whether the
Spring container will create the prototype-scoped bean (the dependency) before the singleton-scoped bean (the dependent bean)? or the Spring
container will create and inject the prototype-scoped bean instance only when
you call the ApplicationContext’s getBean method to retrieve the singleton-scoped bean instance? The answers
to these questions lies in the way singleton- and prototype-scoped dependencies
of a bean are managed by the Spring container, as explained next.

Singleton-scoped
bean’s dependencies

The
following example listing shows the singleton-scoped customerRequestService bean of MyBank application, and its dependencies:

Example listing 4-10 – applicationContext.xml - Dependencies of customerRequestService bean

Project
– ch04-bankapp-dependencies

Source location - src/main/resources/META-INF/spring

 <bean
id="customerRequestService"

 class="sample.spring.chapter04.bankapp.service.CustomerRequestServiceImpl">

 <constructor-arg
name="customerRequestDetails" ref="customerRequestDetails"
/>

 <constructor-arg
name="customerRequestDao" ref="customerRequestDao" />

 </bean>

 <bean
id="customerRequestDetails"

 class="sample.spring.chapter04.bankapp.domain.CustomerRequestDetails"

 scope="prototype"
/>

 <bean
id="customerRequestDao"

 class="sample.spring.chapter04.bankapp.dao.CustomerRequestDaoImpl"
/>

The above
example listing shows that the customerRequestService (singleton-scoped) bean depends on customerRequestDetails
(prototype-scoped) and customerRequestDao (singleton-scoped) beans. CustomerRequestService object
(represented by the customerRequestService bean) represents a service that is invoked when a bank customer
creates a new request, like a cheque book request. CustomerRequestService puts the details of the customer request into a CustomerRequestDetails object (represented by the customerRequestDetails bean) and
saves it in the data store using CustomerRequestDao object (represented
by the customerRequestDao bean).

The
following example listing shows the main method of BankApp class
that loads the bean definitions shown in example listing 4-10:

Example listing 4-11 – BankApp class

Project
– ch04-bankapp-dependencies

Source location -
src/main/java/sample/spring/chapter04/bankapp

package sample.spring.chapter04.bankapp;

import
org.springframework.context.ApplicationContext;

import
org.springframework.context.support.ClassPathXmlApplicationContext;

public class BankApp {

 private static Logger logger =
Logger.getLogger(BankApp.class);

 public static void main(String args[])
throws Exception {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "classpath:META-INF/spring/applicationContext.xml");

 logger.info("Beginning with
accessing CustomerRequestService");

 CustomerRequestService
customerRequestService_1

 =
context.getBean(CustomerRequestService.class);

 CustomerRequestService
customerRequestService_2

 =
context.getBean(CustomerRequestService.class);

 logger.info("Done with accessing
CustomerRequestService");

 }

}

The above
example listing shows that after the ApplicationContext instance is
created, ApplicationContext’s getBean method is invoked twice to obtain reference to the customerRequestService bean.

If you
execute the main method of the BankApp class, you’ll see the following output:

Created
CustomerRequestDetails instance

Created
CustomerRequestDaoImpl instance

Created
CustomerRequestServiceImpl instance

.....

Beginning
with accessing CustomerRequestService

Done
with accessing CustomerRequestService

The ‘Created.....’ messages shown in the above output are printed by the constructors
of the respective bean classes. The above output shows that the customerRequestDetails (prototype-scoped) and customerRequestDao (singleton-scoped)
dependencies of the customerRequestService (singleton-scoped) bean are created and injected into the customerRequestService instance when the Spring container is created. As no ‘Created’ message was printed on the console between ‘Beginning’ and ‘Done
.....’ messages, no bean instances were created by
the Spring container when ApplicationContext’s getBean method was invoked to retrieve the customerRequestService bean.

Figure 4-2
shows the sequence diagram that depicts the sequence of events that occur when BankApp’s main method
(refer example listing 4-11) is executed. Figure 4-2
shows that when Spring container is created, the customerRequestDetails
(prototype-scoped) and customerRequestDao (singleton-scoped) beans are first created, followed by creation of
customerRequestService (singleton-scoped). Constructor-based DI is used to inject the customerRequestDetails and customerRequestDao beans into the customerRequestService bean. As a singleton-scoped bean is created only once by the Spring container, the Spring container has only one opportunity to inject customerRequestService bean’s
dependencies. For this reason, the Spring container injects prototype-scoped customerRequestDetails bean instance into the customerRequestService bean only once. The implication of this behavior is that the customerRequestService bean ends up holding reference to the same customerRequestDetails bean during its lifetime.

Figure 4-2 - The sequence of events that occur when the Spring container is
created and the customerRequestService bean is retrieved from the Spring container

It is
important to note that even if setter-based DI was used to inject the
prototype-scoped customerRequestDetails dependency of the customerRequestService bean, the Spring container would have called the setter method only once during the lifetime of the customerRequestService bean. This
means that irrespective of whether setter- or constructor-based DI is used, a
singleton bean is created and configured only once during it’s lifetime.

Now, once
the Spring container is created, any request for the singleton-scoped customerRequestService bean returns the same cached instance of the customerRequestService bean. For this reason, no ‘Created’ message was written out to the console between ‘Beginning’ and ‘Done
.....’ messages when we executed BankApp’s main method
(refer example listing 4-11).

As the
singleton-scoped customerRequestService bean always holds reference to the same
prototype-scoped customerRequestDetails bean, it may adversely affect the behavior of MyBank application.
For instance, if multiple customers simultaneously submit request to the CustomerRequestServiceImpl instance, all the requests will result in modifying the same
instance of the CustomerRequestDetails object held by the CustomerRequestService. Ideally, CustomerRequestServiceImpl should create a new instance of CustomerRequestDetails object on
every request. In section 4-5, we’ll see what modifications we need to make to
the bean class of a singleton-scoped bean so that it can retrieve a new
instance of a prototype-scoped bean on every method call.

Let’s now
look at how the Spring container manages prototype- and singleton-scoped
dependencies of a prototype-scoped bean.

Prototype-scoped
bean’s dependencies

In MyBank,
a customer registers with the MyBank application by
following a sequence of steps. For instance, a customer first enters personal
information and his account details, and if the MyBank application finds a
matching record, the customer is asked for his debit card details. The CustomerRegistrationServiceImpl class of MyBank application contains the necessary business logic
to register customers. As the customers follow a sequence of steps to register
with the MyBank application, the CustomerRegistrationServiceImpl
object maintains conversational state between method calls.

The
following example listing shows the prototype-scoped customerRegistrationService bean (representing the CustomerRegistrationServiceImpl class) of MyBank application, and its dependencies:

Example listing 4-12 – applicationContext.xml - customerRegistrationService bean and its dependencies

Project
– ch04-bankapp-dependencies

Source location -
src/main/resources/META-INF/spring

 <bean
id="customerRegistrationService"

 class="sample.spring.chapter04.bankapp.service.CustomerRegistrationServiceImpl"

 scope="prototype">

 <constructor-arg
name="customerRegistrationDetails"
ref="customerRegistrationDetails" />

 <constructor-arg
name="customerRegistrationDao" ref="customerRegistrationDao"
/>

 </bean>

 <bean
id="customerRegistrationDetails"

 class="sample.spring.chapter04.bankapp.domain.CustomerRegistrationDetails"

 scope="prototype"
/>

 <bean id="customerRegistrationDao"

 class="sample.spring.chapter04.bankapp.dao.CustomerRegistrationDaoImpl"
/>

The above
example listing shows that the customerRegistrationService (prototype-scoped) bean depends on customerRegistrationDetails
(prototype-scoped) and customerRegistrationDao (singleton-scoped) beans.

CustomerRegistrationServiceImpl
instance maintains progress of the registration process, and stores information
provided by the customer during the registration process in a CustomerRegistrationDetails object (represented by the customerRegistrationDetails bean). As
both CustomerRegistrationServiceImpl and CustomerRegistrationDetails objects are stateful in nature, both customerRegistrationService and customerRegistrationDetails beans are defined as prototype-scoped beans.

The
following example listing shows the main method of BankApp class
that loads customer registration related beans (refer example listing 4-12) and
performs registrations for 2 customers:

Example listing 4-13 – BankApp class

Project
– ch04-bankapp-dependencies

Source location -
src/main/java/sample/spring/chapter04/bankapp

package sample.spring.chapter04.bankapp;

import
org.springframework.context.ApplicationContext;

import
org.springframework.context.support.ClassPathXmlApplicationContext;

public class BankApp {

 private static Logger logger =
Logger.getLogger(BankApp.class);

 public static void main(String args[])
throws Exception {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "classpath:META-INF/spring/applicationContext.xml");

 logger.info("Beginning with
accessing CustomerRegistrationService");

 CustomerRegistrationService
customerRegistrationService_1 = context

 .getBean(CustomerRegistrationService.class);

 customerRegistrationService_1.setAccountNumber("account_1");

 customerRegistrationService_1.setAddress("address_1");

 customerRegistrationService_1.setDebitCardNumber("debitCardNumber_1");

 customerRegistrationService_1.register();

 logger.info("registered
customer with id account_1");

 CustomerRegistrationService
customerRegistrationService_2 = context

 .getBean(CustomerRegistrationService.class);

 logger.info("registered
customer with id account_2");

 logger.info("Done with
accessing CustomerRegistrationService");

 }

}

The above
example listing shows that the BankApp’s main method calls ApplicationContext’s getBean method twice to obtain reference to customerRegistrationService bean.
Once the customerRegistrationService bean instance is retrieved, the setAccountNumber, setAddress, setDebitCardNumber and register methods are invoked on it. If you execute BankApp’s main method,
you’ll see the following output on the console:

Created CustomerRegistrationDaoImpl
instance

.....

Beginning with
accessing CustomerRegistrationService

Created CustomerRegistrationDetails
instance

Created
CustomerRegistrationServiceImpl instance

registered customer
with id account_1

Created CustomerRegistrationDetails
instance

Created
CustomerRegistrationServiceImpl instance

registered customer
with id account_2

Done with accessing
CustomerRegistrationService

The ‘Created.....’ messages shown in the above output are printed by the constructors
of the respective bean classes. The above output shows that the
singleton-scoped customerRegistrationDao bean (representing the CustomerRegistrationDaoImpl class) is
created only
once when the ApplicationContext instance is
created. The ‘Created.....’ messages between ‘Beginning.....’ and ‘Done.....’ messages indicate that each time ApplicationContext’s getBean method
is invoked to obtain the prototype-scoped customerRegistrationService bean, a
new instance of the customerRegistrationService bean and its prototype-scoped dependency (the customerRegistrationDetails bean) is created by the Spring container.

Figure 4-3
shows the sequence diagram that depicts the sequence of events that occur when BankApp’s main method
(refer example listing 4-13) is executed. The figure shows that the
singleton-scoped customerRegistrationDao bean is created only
once when ApplicationContext instance is
created. When the prototype-scoped customerRegistrationService bean is
requested from the Spring container, the Spring container first creates an
instance of customerRegistrationDetails bean (which is the prototype-scoped dependency of the customerRegistrationService bean), followed by the creation of the customerRegistrationService bean. This shows that if a prototype-scoped bean X is dependent on
another prototype-scoped bean Y, Spring container will create a new instance of
X and Y each time you request bean X from the Spring container.

Figure 4-3 – The sequence of events that occur when the
Spring container is created and the customerRegistrationService bean is retrieved from the Spring container

Earlier in
this section, we saw that if a singleton-scoped bean is dependent on a
prototype-scoped bean, then throughout its lifetime the singleton-scoped bean
is associated with the same instance of the prototype-scoped bean. Let’s now look at different
ways in which a singleton-scoped bean can retrieve a new instance of a
prototype-scoped bean from the Spring container.

4-5 Obtaining
new instances of prototype beans inside singleton beans

In the
previous section, we saw that the prototype-scoped dependency of a
singleton-scoped bean is injected at the time of creation of the
singleton-scoped bean (refer figure 4-2). Spring container creates instance of
a singleton-scoped bean only
once; therefore, the singleton-scoped bean holds
reference to the same prototype-scoped bean instance during its lifetime. A
singleton-scoped bean’s methods can retrieve a new instance of their
prototype-scoped dependency from the Spring container using any one of the
following approaches:

·
make the singleton-scoped bean’s class implement
Spring’s ApplicationContextAware interface

·
use the <lookup-method> element of Spring’s beans schema

·
use the <replaced-method> element of Spring’s beans schema

NOTE
It is possible to use the new
keyword to create an instance of the prototype-scoped bean’s class in a
singleton-scoped bean’s method and use it. As the responsibility of creating a
bean instance is with the Spring container, we should not attempt to directly create a bean instance
using the new keyword.

IMPORT chapter 4/ch04-bankapp-context-aware (This project shows a scenario in which a
singleton-scoped bean implements Spring’s ApplicationContextAware interface to
obtain instances of a prototype-scoped bean from the Spring container. To run the application, execute the main method of the BankApp class
of this project)

Let’s
first begin by looking at the ApplicationContextAware interface.

ApplicationContextAware interface

Spring’s ApplicationContextAware interface is implemented by beans that require access to the ApplicationContext instance in which they are running. ApplicationContextAware interface
defines a single method, setApplicationContext, which provides the implementing beans with an instance of the ApplicationContext object.

ApplicationContextAware interface is
a lifecycle
interface, which means that the Spring container
calls the beans implementing the ApplicationContextAware interface at
appropriate times during their lifetime. For instance, ApplicationContextAware’s setApplicationContext method is called by the Spring container after the bean instance is created but before
the bean instance is completely initialized. A bean instance is considered
completely initialized only after its initialization method (refer section 5-2 of chapter 5) is called by the Spring container.
It is important to note that after a bean instance is completely initialized,
it is injected into the dependent bean instances by the Spring container. In
chapter 5, we’ll look at some more lifecycle interfaces in Spring.

A bean
that implements the ApplicationContextAware interface can access other beans registered with the ApplicationContext instance by calling ApplicationContext’s getBean method. This means that if the bean class of a singleton-scoped
bean implements ApplicationContextAware interface, it can fetch a new instance of a prototype-scoped bean
from the Spring container by calling ApplicationContext’s getBean
method. As the singleton-scoped bean explicitly obtains its prototype-scoped
dependency from the Spring container by calling ApplicationContext’s getBean
method, you don’t need to define the prototype-scoped bean as a dependency of
the singleton-scoped bean in the application context XML file.

The
following example listing shows the CustomerRequestServiceImpl class that
needs a new instance of CustomerRequestDetails object each time CustomerRequestServiceImpl’s submitRequest method is called:

Example listing
4-14 – CustomerRequestServiceImpl class

Project
– ch04-bankapp-context-aware

Source location - src/main/java/sample/spring/chapter04/bankapp/service

package sample.spring.chapter04.bankapp.service;

import sample.spring.chapter04.bankapp.dao.CustomerRequestDao;

import sample.spring.chapter04.bankapp.domain.CustomerRequestDetails;

public class CustomerRequestServiceImpl
implements CustomerRequestService {

 private CustomerRequestDetails
customerRequestDetails;

 private CustomerRequestDao
customerRequestDao;

 @ConstructorProperties({
"customerRequestDetails", "customerRequestDao" })

 public
CustomerRequestServiceImpl(CustomerRequestDetails customerRequestDetails,

 CustomerRequestDao customerRequestDao)
{

 this.customerRequestDetails =
customerRequestDetails;

 this.customerRequestDao =
customerRequestDao;

 }

 public void submitRequest(String
requestType, String requestDescription) {

 // -- populate
CustomerRequestDetails object and save it

 customerRequestDetails.setType(requestType);

 customerRequestDetails.setDescription(requestDescription);

 customerRequestDao.submitRequest(customerRequestDetails);

 }

}

The above
example listing shows that the CustomerRequestDetails and CustomerRequestDao objects are passed as arguments to the CustomerRequestServiceImpl class’s constructor. The submitRequest method populates the CustomerRequestDetails instance and saves it into the database by calling CustomerRequestDao’s submitRequest method. If multiple customers simultaneously submit request, the submitRequest
method will end up modifying the same instance of the CustomerRequestDetails object, resulting in undesired behavior of MyBank application. To
address this issue, the submitRequest must obtain a new instance of the CustomerRequestDetails object from
the Spring container on each invocation.

The
following example listing shows the CustomerRequestServiceContextAwareImpl class (a modified version of CustomerRequestServiceImpl class that
we saw in example listing 4-14) that implements the ApplicationContextAware interface:

Example listing 4-15 – CustomerRequestServiceContextAwareImpl class that implements Spring’s ApplicationContextAware interface

Project
– ch04-bankapp-context-aware

Source location -
src/main/java/sample/spring/chapter04/bankapp/service

package sample.spring.chapter04.bankapp.service;

import
org.springframework.context.ApplicationContext;

import org.springframework.context.ApplicationContextAware;

public class
CustomerRequestServiceContextAwareImpl implements

 CustomerRequestService, ApplicationContextAware
{

 private CustomerRequestDao
customerRequestDao;

 private ApplicationContext
applicationContext;

 @ConstructorProperties({
"customerRequestDao" })

 public
CustomerRequestServiceContextAwareImpl(CustomerRequestDao customerRequestDao) {

 this.customerRequestDao =
customerRequestDao;

 }

 public void
setApplicationContext(ApplicationContext applicationContext)

 throws BeansException {

 this.applicationContext =
applicationContext;

 }

 public void submitRequest(String
requestType, String requestDescription) {

 CustomerRequestDetails
customerRequestDetails = applicationContext

.getBean(CustomerRequestDetails.class);

 customerRequestDetails.setType(requestType);

 customerRequestDetails.setDescription(requestDescription);

 customerRequestDao.submitRequest(customerRequestDetails);

 }

}

In the above example listing, setApplicationContext method provides
CustomerRequestServiceContextAwareImpl
with an instance of ApplicationContext object. The ApplicationContext instance is later used by the submitRequest method to obtain an
instance of CustomerRequestDetails object from the Spring container.

As the CustomerRequestServiceContextAwareImpl class explicitly obtains CustomerRequestDetails object from
the Spring container, you don’t need to use Spring’s DI mechanism to inject CustomerRequestDetails instance into the CustomerRequestServiceContextAwareImpl instance. For this reason, CustomerRequestServiceContextAwareImpl class’s constructor (refer example listing 4-15) doesn’t specify CustomerRequestDetails object as an argument. If you now go to ch04-bankapp-context-aware project and execute BankApp’s main method, you’ll find that on each invocation of submitRequest
method a new instance of CustomerRequestDetails object is fetched from the Spring container.

In the
context of MyBank, we saw that the ApplicationContextAware interface is
useful if a bean requires access to other beans. The downside of implementing
the ApplicationContextAware interface is that it couples your bean class to Spring Framework.
You can avoid coupling your bean classes with Spring Framework and still access
other beans from the Spring container by using method injection techniques offered by <lookup-method> and <replaced-method> elements of Spring’s beans schema.

Let’s
first look at the <lookup-method> element.

IMPORT chapter 4/ch04-bankapp-lookup-method (This project shows the MyBank application
that uses <lookup-method> element of Spring’s beans schema. To run the
application, execute the main method of the BankApp
class of this project)

<lookup-method> element

If a bean
class defines a bean
lookup method whose return type represents a bean,
the <lookup-method> element instructs the Spring container to provide implementation
for this method. The method implementation provided by the Spring container is
responsible for retrieving the bean instance from the Spring container and
returning it.

The <lookup-method> element’s bean attribute specifies the name of the bean to be looked-up and
returned by the method implementation, and the name attribute specifies the name of
the method whose implementation is to be provided by the Spring container. It
is important to note that the bean lookup method defined by the bean class can
be an abstract or a concrete method.

NOTE The use of <lookup-method> element to instruct the Spring container to
provide implementation for a bean lookup method is referred to as a ‘Method
Injection techinique’ because
the <lookup-method> element injects a bean lookup method
implementation into the bean class.

The
following example listing shows CustomerRequestServiceImpl’s getCustomerRequestDetails abstract method that returns an instance of CustomerRequestDetails instance:

Example listing 4-16 – CustomerRequestServiceImpl class – defining a bean lookup method

Project
– ch04-bankapp-lookup-method

Source location - src/main/java/sample/spring/chapter04/bankapp/service

package sample.spring.chapter04.bankapp.service;

public abstract class
CustomerRequestServiceImpl implements CustomerRequestService {

 private CustomerRequestDao
customerRequestDao;

 @ConstructorProperties({
"customerRequestDao" })

 public
CustomerRequestServiceImpl(CustomerRequestDao customerRequestDao) {

 this.customerRequestDao = customerRequestDao;

 }

 public abstract
CustomerRequestDetails getCustomerRequestDetails();

 @Override

 public void submitRequest(String
requestType, String requestDescription) {

 // -- populate CustomerRequestDetails
object and save it

 CustomerRequestDetails
customerRequestDetails = getCustomerRequestDetails();

 }

}

The above
example listing shows that the CustomerRequestServiceImpl class is defined as abstract because it contains an abstract bean lookup method, getCustomerRequestDetails. Instead of abstract, we could have very well defined the getCustomerRequestDetails method as a
concrete method. The submitRequest method invokes the getCustomerRequestDetails method to access a CustomerRequestDetails instance.

The
following example listing shows bean definitions for CustomerRequestServiceImpl and CustomerRequestDetails classes:

Example listing 4-17 – applicationContext.xml - <lookup-method> element usage

Project
– ch04-bankapp-lookup-method

Source location - src/main/resources/META-INF/spring

 <bean
id="customerRequestService"

 class="sample.spring.chapter04.bankapp.service.CustomerRequestServiceImpl">

 <constructor-arg
name="customerRequestDao" ref="customerRequestDao" />

 <lookup-method
bean="customerRequestDetails"
name="getCustomerRequestDetails"/>

 </bean>

 <bean id="customerRequestDetails"

 class="sample.spring.chapter04.bankapp.domain.CustomerRequestDetails"

 scope="prototype" />

The above
example listing shows that the bean definition for the CustomerRequestServiceImpl class contains a <lookup-method> element. The value of <lookup-method> element’s name attribute
is getCustomerRequestDetails, which instructs the Spring container to provide implementation for
the getCustomerRequestDetails lookup method (refer example listing 4-16) of CustomerRequestServiceImpl class. The value of <lookup-method> element’s bean attribute is customerRequestDetails, which means that the implementation of getCustomerRequestDetails method retrieves a bean with id (or name) as customerRequestDetails from the Spring container and returns it to the calling method. As
the customerRequestDetails bean represents a CustomerRequestDetails object (refer to the customerRequestDetails bean
definition in example listing 4-17), the implementation of getCustomerRequestDetails method returns a CustomerRequestDetails object.

In example
listing 4-16, the CustomerRequestService’s submitRequest method invokes the getCustomerRequestDetails bean lookup method to obtain a CustomerRequestDetails instance. As CustomerRequestDetails class is represented as a prototype-scoped bean in the application
context XML file (refer example listing 4-17), each invocation of the submitRequest method
results in retrieval of a new instance of CustomerRequestDetails object from
the Spring container.

To check
that the <lookup-method> element provides correct implementation for the CustomerRequestService’s getCustomerRequestDetails bean lookup method, the main method of BankApp class
obtains an instance of CustomerRequestService from the Spring container and invokes its submitRequest
method multiple times. If each invocation of the submitRequest method results in
retrieval of a fresh instance of CustomerRequestDetails object from
the Spring container, then it means that the <lookup-method> element
provides correct implementation for the CustomerRequestService’s getCustomerRequestDetails method.

The
following example listing shows the BankApp’s main method
that invokes CustomerRequestService’s submitRequest method multiple times:

Example listing 4-18 – BankApp class

Project
– ch04-bankapp-lookup-method

Source location - src/main/java/sample/spring/chapter04/bankapp

package sample.spring.chapter04.bankapp;

.....

public class BankApp {

 private static Logger logger =
Logger.getLogger(BankApp.class);

 public static void main(String args[])
throws Exception {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

"classpath:META-INF/spring/applicationContext.xml");

 logger.info("Beginning with
accessing CustomerRequestService");

 CustomerRequestService
customerRequestService_1 = context

 .getBean(CustomerRequestService.class);

 customerRequestService_1.submitRequest("checkBookRequest",

 "Request to send a
50-leaf check book");

 customerRequestService_1.submitRequest("checkBookRequest",

 "Request to send a
100-leaf check book");

 logger.info("Done with
accessing CustomerRequestService");

 }

}

If you
execute the BankApp’s main method, you’ll see the following output on the console:

Beginning with
accessing CustomerRequestService

Created CustomerRequestDetails
instance

Created CustomerRequestDetails
instance

.....

Done with accessing
CustomerRequestService

The ‘Created.....’ messages shown in the above output are printed by the constructors
of the respective bean classes. The above output shows that each invocation of CustomerRequestService’s submitRequest method resulted in retrieval of a new CustomerRequestDetails instance from the Spring container.

As the
implementation of the bean lookup method is provided by the Spring container,
some restrictions apply to the signature of the bean lookup
methods. For instance, the bean lookup method must be
defined as public or protected, and it must
not accept any arguments. As the bean class
containing the bean lookup method is subclassed at runtime by the Spring container to provide
the implementation for the bean lookup method, the bean class and the bean lookup method must not be defined as final.

NOTE
As the bean class containing the bean lookup method needs to be subclassed at
runtime by the Spring container to provide implementation for the bean lookup method, the Spring container uses CGLIB (http://cglib.sourceforge.net/) library to perform subclassing of the bean
class. Starting with Spring 3.2, the CGLIB classes are packaged within the spring-core JAR file itself; therefore, you don’t need to
explicitly specify that your project is dependent on CGLIB JAR file.

The <lookup-method> element provides a method injection technique in which a bean class
defines a bean lookup method whose implementation is provided by the Spring
container. Instead of using <lookup-method> element, you can consider using <replaced-method> element of
Spring’s beans schema to perform method injection.

IMPORT chapter 4/ch04-bankapp-replaced-method (This project shows the MyBank application
that uses <replaced-method> element of Spring’s beans schema. To run the
application, execute the main method of the BankApp
class of this project)

<replaced-method> element

The <replaced-method>
element allows you to replace any arbitrary method in a bean class with a
different implementation. The following example listing shows the CustomerRequestServiceImpl
class that we’ll be using as an example to demonstrate use of <replaced-method>
element:

Example listing 4-19 – CustomerRequestServiceImpl class

Project
– ch04-bankapp-replaced-method

Source location -
src/main/java/sample/spring/chapter04/bankapp/service

package sample.spring.chapter04.bankapp.service;

.....

public class CustomerRequestServiceImpl
implements CustomerRequestService {

 private CustomerRequestDao
customerRequestDao;

 public Object getMyBean(String
beanName) {

 return null;

 }

 @Override

 public void submitRequest(String requestType, String requestDescription)
{

 // -- populate CustomerRequestDetails
object and save it

 CustomerRequestDetails
customerRequestDetails =

 (CustomerRequestDetails)
getMyBean("customerRequestDetails");

 customerRequestDetails.setType(requestType);

customerRequestDetails.setDescription(requestDescription);

customerRequestDao.submitRequest(customerRequestDetails);

 }

}

The above
example listing shows that the
CustomerRequestServiceImpl class defines a getMyBean method.
The getMyBean method accepts name of a bean as an argument, and instead of
returning the bean instance corresponding to the bean name argument, the getMyBean
method returns null. The submitRequest method passes customerRequestDetails string as argument to the getMyBean method and assumes that the
getMyBean method returns an instance of customerRequestDetails bean. Using <replaced-method> element, you can override the getMyBean method with a method that
returns the bean instance corresponding to the bean name argument.

The <replaced-method> element needs information about the overridden method (which is CustomerRequestServiceImpl getMyBean method in our example scenario) and the overriding method. The overriding method is provided by the class that implements
Spring’s MethodReplacer interface. The following example listing shows MyMethodReplacer class that implements the MethodReplacer interface:

Example listing 4-20 – MyMethodReplacer class

Project
– ch04-bankapp-replaced-method

Source location -
src/main/java/sample/spring/chapter04/bankapp/service

package sample.spring.chapter04.bankapp.service;

import
org.springframework.beans.factory.support.MethodReplacer;

import
org.springframework.context.ApplicationContextAware;

public class MyMethodReplacer implements
MethodReplacer, ApplicationContextAware {

 private ApplicationContext
applicationContext;

 @Override

 public Object reimplement(Object
obj, Method method, Object[] args) throws Throwable {

 return applicationContext.getBean((String)
args[0]);

 }

 @Override

 public void
setApplicationContext(ApplicationContext applicationContext)

 throws BeansException {

 this.applicationContext =
applicationContext;

 }

}

Spring’s MethodReplacer
interface defines a reimplement method whose implementation is provided by the MyMethodReplacer class. The reimplement method represents the overriding method. MyMethodReplacer class also implements Spring’s ApplicationContextAware interface so
that the reimplement method can access the ApplicationContext instance. The reimplement
method uses the ApplicationContext’s getBean method to retrieve beans from the Spring container.

The reimplement
method accepts the following arguments:

·
Object obj – identifies the object whose method we are overriding. In our
example scenario, the obj object is the CustomerRequestServiceImpl object.

·
Method method – identifies the bean class’s method that is overridden by the reimplement
method. In our example scenario, this is CustomerRequestServiceImpl’s getMyBean
method.

·
Object[] args – identifies arguments passed to the method that we are overriding.
In our example scenario, args represents the arguments passed to the CustomerRequestServiceImpl’s getMyBean method. In example listing 4-20, args[0] in the reimplement
method refers the bean name argument passed to the CustomerRequestServiceImpl’s getMyBean method.

If you now
look at MyMethodReplacer’s reimplement method in example listing 4-20, you can infer that it uses args argument
to first obtain bean name passed to the CustomerRequestServiceImpl’s getMyBean
method, and then calls ApplicationContext’s getBean method to obtain the corresponding bean instance. As MyMethodReplacer’s reimplement method overrides CustomerRequestServiceImpl’s getMyBean method, call to getMyBean method at runtime returns the bean instance whose name was passed
to the getMyBean method.

The <replaced-method> element informs the Spring container that MyMethodReplacer’s reimplement method overrides CustomerRequestServiceImpl’s getMyBean method, as shown in the following example listing:

Example listing 4-21 – applicationContext.xml - <replaced-method> element usage

Project
– ch04-bankapp-replaced-method

Source location - src/main/resources/META-INF/spring

 <bean
id="customerRequestService"

 class="sample.spring.chapter04.bankapp.service.CustomerRequestServiceImpl">

 <constructor-arg
name="customerRequestDao" ref="customerRequestDao" />

 <replaced-method
name="getMyBean" replacer="methodReplacer" />

 </bean>

 <bean
id="methodReplacer"

 class="sample.spring.chapter04.bankapp.service.MyMethodReplacer"
/>

The above
example listing shows bean definitions for MyMethodReplacer and CustomerRequestServiceImpl classes. The <replace-method> element’s name attribute specifies name of the method that you want to override,
and the replacer attribute specifies reference to the bean that implements the MethodReplacer
interface. The method specified by the name attribute is overridden by the reimplement
method of the bean referenced by the replacer attribute.

As in case
of <lookup-method> element, the main method of the BankApp class of ch04-bankapp-replaced-method project validates whether or not the <replaced-method> element overrides the CustomerRequestService’s getMyBean
method with the MyMethodReplacer’s reimplement method. BankApp class of ch04-bankapp-replaced-method project is same as the one we saw in
example listing 4-18 for ch04-bankapp-lookup-method project. If you execute the main method of
the BankApp class, you’ll find that <replaced-method> element
overrides CustomerRequestServiceImpl’s getMyBean method with
MyMethodReplacer’s reimplement
method; therefore, a fresh instance of CustomerRequestDetails instance is
retrieved from the Spring container each time CustomerRequestServiceImpl’s submitRequest
method (refer example listing 4-19) is invoked.

It is
important to note that you can use <replaced-method> element to
replace an abstract or concrete method of a bean class with a different method
implementation. For instance, we could have defined getMyBean
method as an abstract method and used the <replaced-method> element in the same way as described in this section.

NOTE As the bean class needs to be subclassed at
runtime by the Spring container to replace a bean method with a different
method, the Spring container uses CGLIB (http://cglib.sourceforge.net/) library to perform subclassing of the bean
class. Starting with Spring 3.2, the CGLIB classes are packaged within the spring-core JAR file itself; therefore, you don’t need to
explicitly specify that your project is dependent on CGLIB JAR file.

Let’s now
look at how <replaced-method> element uniquely identifies the bean method to be overridden.

Uniquely
identifying the bean method

You may
come across scenarios in which the bean method that you want to replace using <replaced-method> element can’t be uniquely identified by name. For instance, the
following example listing shows a bean class that contains overloaded perform
methods:

Example listing 4-22 – Overloaded methods in a bean class

public class MyBean {

 public void perform(String
task1, String task2) { }

 public void perform(String
task) { }

 public void perform(my.Task
task) { }

}

In the
above example listing, the MyBean class contains multiple methods named perform. To
uniquely identify the bean method to be overridden, the <replaced-method> element uses <arg-type> sub-elements to specify method argument types. For instance, the
following example listing shows how <replaced-method> element
specifies that the perform(String,
String) method of MyBean class should be replaced:

Example listing 4-23 – <replaced-method> element with <arg-type> sub-element

 <bean id="mybean"
class="MyBean">

 <replaced-method
name="perform " replacer=".....">

 <arg-type>java.lang.String</arg-type>

 <arg-type>java.lang.String</arg-type>

 </replaced-method>

 </bean>

Instead of
using the fully-qualified name as the value of <arg-type> element, you can use
a substring of the fully-qualified name as the value. For instance, instead of
using java.lang.String, you can specify Str or String as the value of <arg-type> element in the above example listing.

Let’s now
look at Spring’s autowiring feature that saves you the effort of specifying
bean dependencies in the application context XML file.

4-6
Autowiring dependencies

In Spring,
you have the option to either explicitly specify bean dependencies using <property> and <constructor-arg> elements or let Spring automatically resolve bean dependencies. The
process in which dependencies are automatically resolved by Spring is referred
to as ‘autowiring’.

IMPORT chapter 4/ch04-bankapp-autowiring (This project shows the MyBank application
that uses Spring’s autowiring feature for dependency injection. To run the application, execute the main method of the BankApp class
of this project)

The <bean>
element’s autowire attribute specifies how a bean’s dependencies are automatically
resolved by Spring. The autowire attribute can take any one of the following values: default, byName, byType, constructor
and no. Let’s now look at each of these attribute values in detail.

NOTE You should note that the <bean> element’s autowire attribute is not inherited by child bean definitions.

byType

If you
specify autowire attribute’s value as byType, Spring autowires bean
properties based on their type. For instance, if a bean A defines a
property of type X, Spring finds a bean of type X in the ApplicationContext and injects it into bean A. Let’s look at an example usage of byType
autowiring in the MyBank application.

The
following example listing shows the MyBank application’s CustomerRegistrationServiceImpl class:

Example listing 4-24 – CustomerRegistrationServiceImpl class

Project
– ch04-bankapp-autowiring

Source location -
src/main/java/sample/spring/chapter04/bankapp/service

package sample.spring.chapter04.bankapp.service;

public class
CustomerRegistrationServiceImpl implements CustomerRegistrationService {

 private CustomerRegistrationDetails
customerRegistrationDetails;

 private CustomerRegistrationDao
customerRegistrationDao;

 public void
setCustomerRegistrationDetails(

 CustomerRegistrationDetails
customerRegistrationDetails) {

 this.customerRegistrationDetails =
customerRegistrationDetails;

 }

 public void setCustomerRegistrationDao(

 CustomerRegistrationDao
customerRegistrationDao) {

 this.customerRegistrationDao =
customerRegistrationDao;

 }

}

The above
example listing shows that the CustomerRegistrationServiceImpl
class defines properties named customerRegistrationDetails (of type CustomerRegistrationDetails) and customerRegistrationDao
(of type CustomerRegistrationDao). This means
that the CustomerRegistrationDetails
and CustomerRegistrationDao objects are
dependencies of
CustomerRegistrationServiceImpl object.

The
following example listing shows bean definitions for CustomerRegistrationServiceImpl, CustomerRegistrationDetails and CustomerRegistrationDaoImpl (an implementation of CustomerRegistrationDao interface)
classes:

Example listing 4-25 – applicationContext.xml - autowiring byType configuration

Project
– ch04-bankapp-autowiring

Source location - src/main/resources/META-INF/spring

<bean
id="customerRegistrationService"

 class="sample.spring.chapter04.bankapp.service.CustomerRegistrationServiceImpl"

 scope="prototype"
autowire="byType" />

<bean id="customerRegistrationDetails"

 class="sample.spring.chapter04.bankapp.domain.CustomerRegistrationDetails"

 scope="prototype" />

<bean id="customerRegistrationDao"

 class="sample.spring.chapter04.bankapp.dao.CustomerRegistrationDaoImpl"
/>

In the
above example listing, the customerRegistrationService bean definition doesn’t contain <property> elements for setting
customerRegistrationDetails and customerRegistrationDao properties (refer example listing 4-24). Instead, the <bean> element
specifies autowire attribute’s value as byType to instruct Spring to
automatically resolve dependencies of the customerRegistrationService bean
based on their type. Spring looks for beans of types CustomerRequestDetails and CustomerRegistrationDao in the
ApplicationContext, and injects them into the customerRegistrationService bean. As customerRegistrationDetails and customerRegistrationDao beans represent beans of types CustomerRegistrationDetails and CustomerRegistrationDao, the Spring container injects customerRegistrationDetails and customerRegistrationDao beans into
customerRegistrationService bean.

It may
happen that Spring doesn’t find any bean registered with the ApplicationContext whose type matches the property type. In such cases, no exception
is thrown and the bean property is not set. For instance, if a
bean defines a property x of type Y, and there is no bean of type Y registered with the ApplicationContext instance, the property x is not set. If Spring finds
multiple beans in the ApplicationContext that match the property type, an exception is thrown. In such
cases, instead of using autowiring feature, use <property> elements to
explicitly identify bean dependencies or set a bean as the primary candidate for autowiring by setting the value of primary
attribute of <bean> element to true.

constructor

If you
specify autowire attribute’s value as constructor, Spring autowires bean
class’s constructor arguments based on their type. For instance, if bean A’s
constructor accepts arguments of type X and Y, Spring finds beans of types X and Y in the ApplicationContext and injects them as arguments to bean A’s
constructor. Let’s look at an example usage of constructor autowiring in the MyBank
application.

The
following example listing shows the MyBank application’s CustomerRequestServiceImpl class:

Example listing 4-26 – CustomerRequestServiceImpl class

Project
– ch04-bankapp-autowiring

Source location -
src/main/java/sample/spring/chapter04/bankapp/service

package sample.spring.chapter04.bankapp.service;

public class CustomerRequestServiceImpl
implements CustomerRequestService {

 private CustomerRequestDetails
customerRequestDetails;

 private CustomerRequestDao
customerRequestDao;

 @ConstructorProperties({
"customerRequestDetails", "customerRequestDao" })

 public CustomerRequestServiceImpl(

 CustomerRequestDetails
customerRequestDetails,

 CustomerRequestDao
customerRequestDao) {

 this.customerRequestDetails =
customerRequestDetails;

 this.customerRequestDao =
customerRequestDao;

 }

}

The CustomerRequestServiceImpl class defines a constructor that accepts arguments of type CustomerRequestDetails and CustomerRequestDao.

The
following example listing shows bean definitions for CustomerRequestServiceImpl, CustomerRequestDetails and CustomerRequestDaoImpl (an implementation of CustomerRequestDao interface)
classes:

Example listing 4-27 – applicationContext.xml - constructor autowiring

Project
– ch04-bankapp-autowiring

Source location - src/main/resources/META-INF/spring

 <bean id="customerRequestService"

 class="sample.spring.chapter04.bankapp.service.CustomerRequestServiceImpl"

 autowire="constructor">

 </bean>

 <bean id="customerRequestDetails"

 class="sample.spring.chapter04.bankapp.domain.CustomerRequestDetails"
scope="prototype" />

 <bean id="customerRequestDao"

 class="sample.spring.chapter04.bankapp.dao.CustomerRequestDaoImpl"
/>

In the
above example listing, the customerRequestService bean definition specifies autowire attribute’s value as constructor,
which means that Spring locates beans of types CustomerRequestDetails and CustomerRequestDao in the ApplicationContext, and passes them as arguments to CustomerRequestServiceImpl class’s
constructor. As customerRequestDetails and customerRequestDao beans are of type CustomerRequestDetails and CustomerRequestDao, Spring automatically injects instances of these beans into customerRequestService bean.

If Spring
doesn’t find any bean in the ApplicationContext whose type matches the constructor argument type, the constructor
argument is not set. If Spring finds multiple beans in the ApplicationContext that match the constructor argument type, an exception is thrown;
therefore, in such scenarios use <constructor-arg> elements to
explicitly identify bean dependencies or set a bean as the primary candidate for autowiring by setting value of primary attribute of <bean>
element to true.

byName

If you
specify autowire attribute’s value as byName, Spring autowires bean
properties based on their names. For instance, if a bean A defines a
property named x, Spring finds a bean named x in the ApplicationContext and injects it into bean A. Let’s look at an example usage of byName
autowiring in the MyBank application.

The
following example listing shows the MyBank application’s FixedDepositServiceImpl class:

Example listing 4-28 – FixedDepositServiceImpl class

Project
– ch04-bankapp-autowiring

Source location -
src/main/java/sample/spring/chapter04/bankapp/service

package sample.spring.chapter04.bankapp.service;

import sample.spring.chapter04.bankapp.dao.FixedDepositDao;

import sample.spring.chapter04.bankapp.domain.FixedDepositDetails;

public class FixedDepositServiceImpl
implements FixedDepositService {

 private FixedDepositDao
myFixedDepositDao;

 public void
setMyFixedDepositDao(FixedDepositDao myFixedDepositDao) {

 this.myFixedDepositDao =
myFixedDepositDao;

 }

}

The above
example listing shows that FixedDepositServiceImpl class defines a property named myFixedDepositDao of type FixedDepositDao.

The
following example listing shows bean definitions for FixedDepositServiceImpl and FixedDepositDaoImpl (an implementation of FixedDepositDao interface) classes:

Example listing 4-29 – applicationContext.xml - byName autowiring

Project
– ch04-bankapp-autowiring

Source location - src/main/resources/META-INF/spring

 <bean
id="FixedDepositService"

 class="sample.spring.chapter04.bankapp.service.FixedDepositServiceImpl"

 autowire="byName"
/>

 <bean id="myFixedDepositDao"

 class="sample.spring.chapter04.bankapp.dao.FixedDepositDaoImpl"
/>

In the
above example listing, FixedDepositService bean definition specifies autowire attribute’s value as byName, which
means properties of FixedDepositService bean are automatically resolved by Spring based on their names. In
listing 4-28, we saw that the FixedDepositServiceImpl class defines a property named myFixedDepositDao; therefore, Spring
looks for a bean named myFixedDepositDao in the ApplicationContext and injects it into FixedDepositService bean. In the above example listing, myFixedDepositDao bean definition
represents the FixedDepositDaoImpl class, which means that an instance of FixedDepositDaoImpl is injected for property named myFixedDepositDao in the FixedDepositService bean.

default / no

If you
specify autowire attribute’s value as default or no, autowiring
feature is disabled for the bean. As Spring’s default behavior is to use no autowiring for beans, specifying autowire attribute’s value as default means
no autowiring will be performed for the bean. You can explicitly specify that a
bean must
not use Spring’s autowiring feature by specifying autowire
attribute’s value as no.

NOTE
You can change the default autowiring behavior of beans by setting the default-autowire attribute of <beans> element. For instance, if you set default-autowire attribute’s value to byType, it effectively means setting value of autowire attribute of all the <bean> elements in the application context XML file to
byType. You should note that if a <bean> element’s autowire attribute specifies a different value than the <beans> element’s default-autowire attribute, the <bean> element’s autowire
attribute value applies to the bean.

The
following example listing shows the bean definition for the MyBank
application’s CustomerRegistrationServiceImpl class that specifies autowire attribute’s value as no:

Example listing 4-30 – applicationContext.xml - no autowiring

Project
– ch04-bankapp-autowiring

Source location - src/main/resources/META-INF/spring

 <bean
id="customerRegistrationService_"

 class="sample.spring.chapter04.bankapp.service.CustomerRegistrationServiceImpl"

 scope="prototype" autowire="no"
/>

Example
listing 4-24 showed that the CustomerRegistrationServiceImpl class defines customerRegistrationDetails (of type CustomerRegistrationDetails) and customerRegistrationDao (of type CustomerRegistrationDao) properties. As the autowire attribute’s value is specified as no for customerRegistrationService_ bean,
autowiring is disabled for customerRegistrationService_ bean. This means that the customerRegistrationDetails and customerRegistrationDao properties of customerRegistrationService_ bean are not set by Spring.

So far in
this section we have seen different ways in which bean dependencies can be
autowired by Spring. Let’s now look at how we can make a bean unavailable for autowiring purposes using <bean> element’s autowire-candidate attribute.

Making beans
unavailable for autowiring

The
default behavior of the Spring container is to make beans available for
autowiring. You can make a bean unavailable to other beans for autowiring
purposes by setting autowire-candidate attribute’s value to false.

In MyBank
application, the AccountStatementServiceImpl class defines a property of type AccountStatementDao. The following
example listing shows the AccountStatementServiceImpl class:

Example listing 4-31 – AccountStatementServiceImpl
class

Project
– ch04-bankapp-autowiring

Source location -
src/main/java/sample/spring/chapter04/bankapp/service

package sample.spring.chapter04.bankapp.service;

import sample.spring.chapter04.bankapp.dao.AccountStatementDao;

import sample.spring.chapter04.bankapp.domain.AccountStatement;

public class AccountStatementServiceImpl
implements AccountStatementService {

 private AccountStatementDao
accountStatementDao;

 public void
setAccountStatementDao(AccountStatementDao accountStatementDao) {

 this.accountStatementDao =
accountStatementDao;

 }

}

The
following example listing shows bean definitions for AccountStatementServiceImpl and AccountStatementDaoImpl (an implementation of AccountStatementDao interface)
classes:

Example listing 4-32 – applicationContext.xml - autowire-candidate attribute

Project
– ch04-bankapp-autowiring

Source location - src/main/resources/META-INF/spring

<bean id="accountStatementService"

 class="sample.spring.chapter04.bankapp.service.AccountStatementServiceImpl"

 autowire="byType" />

<bean id="accountStatementDao"

 class="sample.spring.chapter04.bankapp.dao.AccountStatementDaoImpl"

 autowire-candidate="false"
/>

In the
above example listing, the accountStatementService bean definition specifies autowire attribute’s value as byType, which
means AccountStatementDao property type of accountStatementService bean is autowired by type. As accountStatementDao bean is of type AccountStatementDao, you might think that Spring will inject accountStatementDao bean instance into accountStatementService bean. But, Spring won’t consider accountStatementDao bean for
autowiring purposes because the accountStatementDao bean definition specifies autowire-candidate attribute’s value
as false.

NOTE
You should note that a bean that is unavailable to other beans for autowiring
purposes can itself make use of Spring’s autowiring feature to automatically
resolve it’s dependencies.

As
mentioned earlier, the default behavior of the Spring container is to make
beans available for autowiring purposes. To make only only a select set of
beans available for autowiring purposes, set <beans> element’s default-autowire-candidates attribute. The default-autowire-candidates attribute specifies a bean name pattern,
and only beans whose names match the specified pattern are made available for
autowiring. The following example listing shows an example usage of default-autowire-candidates attribute:

Example listing 4-33 – default-autowire-candidates attribute example

<beans default-autowire-candidates="*Dao" >

 <bean id="customerRequestDetails"

 class="sample.spring.chapter04.bankapp.domain.CustomerRequestDetails"

 scope="prototype" autowire-candidate="true"/>

 <bean id="customerRequestDao"

 class="sample.spring.chapter04.bankapp.dao.CustomerRequestDaoImpl"
/>

 <bean id="customerRegistrationDao"

 class="sample.spring.chapter04.bankapp.dao.CustomerRegistrationDaoImpl"
/>

</beans>

In the
above example listing, default-autowire-candidates value is set to *Dao, which means that beans whose names end with Dao (like customerRequestDao and customerRegistrationDao beans) will be available for autowiring purposes. If a bean name
doesn’t match the pattern specified by the default-autowire-candidates attribute
(like customerRequestDetails bean), you can still make it available for autowiring purposes by
setting the autowire-candidate attribute of the corresponding <bean> element to true.

Let’s now
look at limitations of using autowiring in applications.

Autowiring limitations

We saw that
autowiring feature saves the effort to explicitly specify bean dependencies
using <property> and <constructor-arg> elements. The downsides of using autowiring feature are:

·
You can’t use autowiring to set properties or
constructor arguments that are of simple Java types (like int, long, boolean, String, Date, and so
on). You can autowire arrays, typed collections and maps if the autowire
attribute’s value is set to byType or constructor.

·
As bean dependencies are automatically resolved
by Spring, it results in hiding the overall structure of the application. If
you use <property> and <constructor-arg> elements to specify bean dependencies, it results in explicitly
documenting the overall structure of the application. You can easily understand
and maintain an application in which bean dependencies are explicitly
documented. For this reason, it is not recommended to use autowiring in large
applications.

4-7 Summary

In this
chapter, we looked at how Spring caters to different dependency injection
scenarios. We looked at how you can use ApplicationContextAware interface, <replaced-method> and <lookup-method> sub-elements of <bean> element to programmatically retrieve a bean instance from the ApplicationContext. We also looked at how Spring’s autowiring feature can save the
effort for explicitly specifying bean dependencies in the application context
XML file. In the next chapter, we’ll look at how to customize beans and bean
definitions.

Chapter 5 - Customizing beans and
bean definitions

5-1
Introduction

So far in
this book we have seen examples in which the Spring container created a bean
instance based on the bean definition specified in the application context XML
file. In this chapter, we’ll go a step further and look at:

·
how to incorporate custom initialization and
destruction logic for a bean

·
how to interact with a newly created bean
instance by implementing Spring’s BeanPostProcessor interface

·
how to modify bean definitions by implementing
Spring’s BeanFactoryPostProcessor interface

5-2
Customizing bean’s initialization and destruction logic

We saw in
earlier chapters that the Spring container is responsible for creating a bean
instance and injecting its dependencies. After creating a bean instance by
invoking the constructor of the bean class, the Spring container sets bean
properties by invoking bean’s setter methods. If you want to execute custom
initialization logic (like opening a file, creating a database connection, and
so on) after the bean properties are set but before
the bean is completely initialized by the Spring container, you can do so by
specifying the name of the initialization method as the value of init-method attribute of <bean>
element. Similarly, if you want to execute
custom cleanup logic before the Spring container containing the bean instance is destroyed, you
can specify the name of the cleanup method as the value of destroy-method attribute of <bean>
element.

IMPORT chapter 5/ch05-bankapp-customization (This project shows the MyBank application
that uses <bean> element’s init-method and destroy-method elements to specify custom initialization and destruction methods. To test whether the initialization method
is executed, execute the main method of the BankApp
class of this project. To test whether the
destruction method is executed, execute the main method of the BankAppWithHook class of this project.)

The
following example listing shows the MyBank’s FixedDepositDaoImpl class that defines an initialization method named initializeDbConnection for obtaining connection to MyBank’s
database, and a destruction method named releaseDbConnection for releasing the
connection:

Example listing 5-1 – FixedDepositDaoImpl class - Custom initialization and destruction logic

Project
– ch05-bankapp-customization

Source location - src/main/java/sample/spring/chapter05/bankapp/dao

package sample.spring.chapter05.bankapp.dao;

public class FixedDepositDaoImpl implements
FixedDepositDao {

 private static Logger logger =
Logger.getLogger(FixedDepositDaoImpl.class);

 private DatabaseConnection connection;

 public FixedDepositDaoImpl() {

 logger.info("FixedDepositDaoImpl's
constructor invoked");

 }

 public void initializeDbConnection()
{

 logger.info("FixedDepositDaoImpl’s
initializeDbConnection method invoked");

 connection =
DatabaseConnection.getInstance();

 }

 public boolean
createFixedDeposit(FixedDepositDetails fixedDepositDetails) {

 logger.info("FixedDepositDaoImpl’s
createFixedDeposit method invoked");

 // -- save the fixed deposits and
then return true

 return true;

 }

 public void releaseDbConnection() {

 logger.info("FixedDepositDaoImpl’s
releaseDbConnection method invoked");

 connection.releaseConnection();

 }

}

In the
above example listing, the DatabaseConnection object is used for interacting with the MyBank’s database. FixedDepositDaoImpl class defines an initializeDbConnection method that initializes the DatabaseConnection object, which is
later used by the createFixedDeposit method for saving fixed deposit details in the MyBank’s database.

The
following example listing shows the MyBank’s FixedDepositServiceImpl class that
uses FixedDepositDaoImpl instance to create new fixed deposits:

Example listing 5-2 – FixedDepositServiceImpl class

Project
– ch05-bankapp-customization

Source location -
src/main/java/sample/spring/chapter05/bankapp/service

package sample.spring.chapter05.bankapp.service;

public class FixedDepositServiceImpl
implements FixedDepositService {

 private static Logger logger =
Logger.getLogger(FixedDepositServiceImpl.class);

 private FixedDepositDao
myFixedDepositDao;

 public void setMyFixedDepositDao(FixedDepositDao
myFixedDepositDao) {

 logger.info("FixedDepositServiceImpl's
setMyFixedDepositDao method invoked");

 this.myFixedDepositDao =
myFixedDepositDao;

 }

 @Override

 public void
createFixedDeposit(FixedDepositDetails fixedDepositDetails) throws Exception {

 // -- create fixed deposit

 myFixedDepositDao.createFixedDeposit(fixedDepositDetails);

 }

}

The above
example listing shows that the FixedDepositDaoImpl instance is a dependency of FixedDepositServiceImpl, and is
passed as an argument to the setMyFixedDepositDao setter-method. And, if FixedDepositServiceImpl’s createFixedDeposit method is invoked, it results in invocation of FixedDepositDaoImpl’s createFixedDeposit method.

The
following example listing shows bean definitions for FixedDepositDaoImpl and FixedDepositServiceImpl classes:

Example listing 5-3 – applicationContext.xml – usage of init-method and destroy-method attributes

Project
– ch05-bankapp-customization

Source location - src/main/resources/META-INF/spring

<beans>

 <bean
id="FixedDepositService"

 class="sample.spring.chapter05.bankapp.service.FixedDepositServiceImpl">

 <property
name="myFixedDepositDao" ref="myFixedDepositDao" />

 </bean>

 <bean id="myFixedDepositDao"

 class="sample.spring.chapter05.bankapp.dao.FixedDepositDaoImpl"

 init-method="initializeDbConnection"
destroy-method="releaseDbConnection" />

</beans>

The above
example listing shows that the <bean> element corresponding to the FixedDepositDaoImpl class specifies initializeDbConnection and releaseDbConnection as the values of init-method and destroy-method attributes, respectively.

NOTE It is important to note that the initialization
and destruction methods specified by the init-method and destroy-method attributes of <bean> element must not accept any
arguments, but can be defined to throw exceptions.

The
following example listing shows BankApp class whose main method retrieves FixedDepositServiceImpl instance from the ApplicationContext and invokes FixedDepositServiceImpl’s createFixedDeposit method:

Example listing 5-4 – BankApp class

Project
– ch05-bankapp-customization

Source location -
src/main/java/sample/spring/chapter05/bankapp

package sample.spring.chapter05.bankapp;

public class BankApp {

 public static void main(String args[])
throws Exception {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

"classpath:META-INF/spring/applicationContext.xml");

 FixedDepositService
FixedDepositService = context.getBean(FixedDepositService.class);

 FixedDepositService.createFixedDeposit(new
FixedDepositDetails(1, 1000,

 12,
"someemail@somedomain.com"));

 }

}

If you now
execute the BankApp’s main method, you’ll see the following output on the console:

FixedDepositDaoImpl's constructor
invoked

FixedDepositDaoImpl’s
initializeDbConnection method invoked

FixedDepositServiceImpl's
setMyFixedDepositDao method invoked

FixedDepositDaoImpl’s
createFixedDeposit method invoked

The above
output shows that the Spring container first creates FixedDepositDaoImpl’s instance, and then invokes initializeDbConnection method. After
the invocation of initializeDbConnection method, the FixedDepositDaoImpl instance is injected into the FixedDepositServiceImpl instance.
This shows that the Spring container injects a dependency (the FixedDepositDaoImpl instance) into the dependent bean (the FixedDepositServiceImpl instance) after the initialization method of the dependency is invoked by the
Spring container.

You may
have noticed that the output from executing BankApp’s main method
didn’t contain the following message: FixedDepositDaoImpl’s
releaseDbConnection method invoked (refer FixedDepositDaoImpl’s
releaseDbConnection method in example listing 5-1). This means that the FixedDepositDaoImpl’s releaseDbConnection method was not called by the Spring container when BankApp’s main method
exited. In a real world application development scenario, this means that the
database connection held by FixedDepositDaoImpl instance is never released. Let’s now see how you can make Spring
gracefully destroy singleton-scoped bean instances by calling the cleanup
method specified by the <bean> element’s destroy-method
attribute.

Making Spring
invoke cleanup method specified by the destory-method attribute

The web
version of ApplicationContext implementation is represented by Spring’s WebApplicationContext object. WebApplicationContext implementation has the necessary logic to invoke the cleanup method
(specified by the destroy-method attribute) of singleton-scoped bean instances before the web application is shutdown.

NOTE
The approach described in this section on making Spring gracefully destroy
singleton-scoped bean instances by calling the cleanup method is specific to
standalone applications.

The
following example listing shows the BankAppWithHook class (a modified
version of BankApp class shown in example listing 5-4) whose main method
ensures that cleanup methods (specified by <bean> element’s destroy-method
attribute) of all singleton-scoped beans registered with the Spring container
are invoked when the main method exits:

Example listing 5-5 – BankAppWithHook class – registering a shutdown hook with JVM

Project
– ch05-bankapp-customization

Source location -
src/main/java/sample/spring/chapter05/bankapp

package sample.spring.chapter05.bankapp;

public class BankAppWithHook {

 public static void main(String args[])
throws Exception {

 AbstractApplicationContext
context = new ClassPathXmlApplicationContext(

 "classpath:META-INF/spring/applicationContext.xml");

 context.registerShutdownHook();

 FixedDepositService
FixedDepositService = context.getBean(FixedDepositService.class);

FixedDepositService.createFixedDeposit(new FixedDepositDetails(1, 1000,

 12,
"someemail@somedomain.com"));

 }

}

Spring’s AbstractionApplicationContext class implements ApplicationContext interface and defines a registerShutdownHook method that
registers a shutdown hook with the JVM. The shutdown hook is responsible for
closing the ApplicationContext when the JVM is shutdown. In the above example listing, you’ll
notice that the ClassPathXmlApplicationContext instance is assigned to AbstractionApplicationContext type,
and the AbstractionApplicationContext’s registerShutdownHook
is called to register a shutdown hook with the
JVM. When the BankAppWithHook’s main method exists, the shutdown hook destroys all cached singleton bean
instances and closes the ApplicationContext instance.

If you
execute BankAppWithHook’s main method of ch05-bankapp-customization project, you’ll see the following output on the console:

FixedDepositDaoImpl's constructor
invoked

FixedDepositDaoImpl’s
initializeDbConnection method invoked

FixedDepositServiceImpl's setMyFixedDepositDao
method invoked

FixedDepositDaoImpl's
releaseDbConnection method invoked

The
message ‘FixedDepositDaoImpl's
releaseDbConnection method invoked’ on the console
confirms that the FixedDepositDaoImpl’s releaseDbConnection method (refer FixedDepositDaoImpl’s
releaseDbConnection method in example listing 5-1) was invoked. As you can see, registering a shutdown hook with the
JVM resulted in invocation of the cleanup method of the singleton-scoped myFixedDepositDao bean (corresponding to the FixedDepositDaoImpl class).

Let’s now
look at the impact of shutdown hook on prototype-scoped beans.

Cleanup
methods and prototype-scoped beans

In case of
prototype-scoped beans, destroy-method attribute is ignored by the Spring container. The destroy-method
attribute is ignored because the Spring container expects that the object that
fetches the prototype-scoped bean instance from the ApplicationContext is responsible for explicitly calling the cleanup method on the
prototype-scoped bean instance.

NOTE Lifecycles of prototype- and singleton-scoped
beans are same, except that the Spring container will not call the cleanup method (specified by the destroy-init attribute) of the prototype-scoped bean
instance.

Let’s now
look at how you can specify default initialization and destruction methods for
all the beans contained in the application context XML file.

Specifying
default bean initialization and destruction methods for all beans

You can
use the
default-init-method and default-destroy-method attributes of <beans> element to specify default initialization and destruction methods
for beans, as shown in the following example listing:

Example listing 5-6 – default-init-method and default-destroy-method attributes

<beans default-init-method="initialize"
default-destroy-method="release">

 <bean id="A"
class="....." init-method="initializeService" />

 <bean id="B"
class="....." />

</beans>

If
multiple beans define initialization or cleanup methods with the same name, it
makes sense to use default-init-method and default-destroy-method attributes. By specifying init-method and destroy-method
attributes, a <bean> element can override the values specified by <beans>
element’s default-init-method and default-destroy-method attributes. For instance, in the above example listing, bean A specifies init-method
attribute value as initializeService, which means initializeService method (and not initialize
method specified by the default-init-method attribute of <beans> element) is the initialization method of bean A.

Instead of
using init-method and destroy-method attributes of <bean> element to specify custom initialization and destruction methods,
you can use Spring’s InitializingBean and DisposableBean lifecycle interfaces.

InitializingBean and DisposableBean lifecycle interfaces

A bean
that implements lifecycle interfaces, like ApplicationContextAware (refer
section 4-5 of chapter 4), InitializingBean and DisposableBean, receives callbacks from the Spring container to give a chance to
the bean instance to perform some action, or to provide bean instance with some
information. For instance, if a bean implements ApplicationContextAware interface,
container invokes setApplicationContext method of the bean instance to provide the bean with a reference to
the ApplicationContext in which the bean is deployed.

InitializingBean interface defines an afterPropertiesSet method that is invoked by the Spring container after the bean
properties are set. Beans perform initialization work in the afterPropertiesSet method, like obtaining connection to a database, opening a flat
file for reading, and so on. DisposableBean interface defines a destroy method that is invoked by the Spring container when the bean
instance is destroyed.

NOTE
As with the ApplicationContextAware lifecycle interface, beans should avoid
implementing InitializingBean and DisposableBean interfaces because it couples application code with
Spring.

Let’s now
look at JSR 250’s @PostConstruct and @PreDestroy annotations for specifying bean initialization and destruction
methods.

JSR 250’s @PostConstruct and @PreDestroy annotations

JSR 250
(Common Annotations for the Java Platform) defines standard annotations that
are used across different Java technologies. JSR 250’s @PostConstruct
and @PreDestroy annotations identify initialization and destruction methods of an
object. A bean class in Spring can set a method as an initialization method by
annotating it with @PostConstruct, and set a method as a destruction method by annotating it with @PreDestroy
annotation.

NOTE
Refer JSR 250 home page (http://jcp.org/en/jsr/detail?id=250) for more details.

IMPORT chapter 5/ch05-bankapp-jsr250 (This project shows the MyBank application
that uses JSR 250’s @PostConstruct and @PreDestroy
annotations to identify custom initialization and
destruction methods, respectively. To test whether the initialization method is executed, execute the main method of
the BankApp class of this project. To test whether the destruction method is
executed, execute the main method of the BankAppWithHook
class of this project.)

The
following example listing shows the FixedDepositDaoImpl class of ch05-bankapp-jsr250 project that uses @PostConstruct and @PreDestroy annotations:

Example listing 5-7 – FixedDepositDaoImpl class - @PostConstruct and @PreDestroy annotations

Project
– ch05-bankapp-jsr250

Source location -
src/main/java/sample/spring/chapter05/bankapp/dao

package sample.spring.chapter05.bankapp.dao;

import javax.annotation.PostConstruct;

import javax.annotation.PreDestroy;

public class FixedDepositDaoImpl implements
FixedDepositDao {

 private DatabaseConnection connection;

 @PostConstruct

 public void initializeDbConnection() {

logger.info("FixedDepositDaoImplís initializeDbConnection method
invoked");

 connection =
DatabaseConnection.getInstance();

 }

 @PreDestroy

 public void releaseDbConnection() {

logger.info("FixedDepositDaoImpl's releaseDbConnection method
invoked");

 connection.releaseConnection();

 }

}

In the
above example listing, the FixedDepositDaoImpl class uses @PostConstruct and @PreDestroy annotations to identify initialization and destruction methods. You
should note that @PostConstruct and @PreDestroy annotations are not specific to Spring.

NOTE
Java SE 6 provides annotations defined by JSR 250; if you are using Java SE 6
or later, you don’t need to include JSR 250 JAR file in your application’s
classpath. If you are using Java SE 5, you need to include JSR 250 JAR file and
the related JAR files in your application’s classpath.

To use @PostConstruct
and @PreDestroy annotations in your application, you need to configure Spring’s CommonAnnotationBeanPostProcessor class in the application context XML file, as shown here:

Example listing 5-8 – applicationContext.xml – CommonAnnotationBeanPostProcessor configuration

Project
– ch05-bankapp-jsr250

Source location -
src/main/resources/META-INF/spring

<beans>

 <bean
id="FixedDepositService"

 class="sample.spring.chapter05.bankapp.service.FixedDepositServiceImpl">

 <property
name="myFixedDepositDao" ref="myFixedDepositDao" />

 </bean>

 <bean id="myFixedDepositDao"

 class="sample.spring.chapter05.bankapp.dao.FixedDepositDaoImpl"
/>

 <bean

 class="org.springframework.context.annotation.CommonAnnotationBeanPostProcessor"/>

</beans>

CommonAnnotationBeanPostProcessor implements Spring’s BeanPostProcessor interface (explained in the next section), and is responsible for
processing JSR 250 annotations.

If you
execute the main method of BankApp and BankAppWithHook classes, you’ll notice that the @PostConstruct and @PreDestroy
annotated methods of FixedDepositDaoImpl class are executed at creation and destruction of FixedDepositDaoImpl instance, respectively.

We’ll now
look at Spring’s BeanPostProcessor interface that allows you to interact with newly created bean
instances before or after they are initialized by the Spring container.

5-3
Interacting with newly created bean instances using BeanPostProcessor

BeanPostProcessor is used to interact
with newly created bean instances before and/or after their initialization method (refer section 5-2) is invoked by the
Spring container. You can use BeanPostProcessor to execute custom logic before
and/or after bean’s initialization method is invoked by the Spring container.

NOTE A bean that implements
Spring’s BeanPostProcessor interface is a special bean type; the
Spring container automatically detects and executes a BeanPostProcessor bean.

BeanPostProcessor
interface defines the following methods:

·
Object postProcessBeforeInitialization(Object
bean, String beanName) – this method is invoked before
the initialization method of a bean instance is invoked

·
Object postProcessAfterInitialization(Object
bean, String beanName) – this method is invoked after
the initialization method of a bean instance is invoked

BeanPostProcessor’s methods accept
newly created bean instance and its name as arguments, and return the same or
modified bean instance. For instance, if you have configured a FixedDepositDaoImpl class as a bean with id value as myFixedDepositDao in the application context XML file (refer example listing 5-8),
the BeanPostProcessor’s methods receive an instance of FixedDepositDaoImpl class and myFixedDepositDao string value as arguments. The BeanPostProcessor’s methods may
return the original bean instance as-is or they may modify the bean instance or
they may return an object that wraps the original bean instance.

You
configure a BeanPostProcessor implementation in the application context XML file like any other
Spring bean. Spring container automatically detects beans that implement BeanPostProcessor interface, and creates their instance before
creating instance of any other bean defined in the application context XML file.
Once the BeanPostProcessor beans are created, the Spring container invokes each BeanPostProcessor’s
postProcessBeforeInitialization and postProcessAfterInitialization methods for each bean instance created by the Spring container.

Let’s say
that you have defined a singleton-scoped bean ABean and a BeanPostProcessor bean, MyBeanPostProcessor, in the application context XML file. Figure 5-1 shows a sequence
diagram that depicts the sequence in which MyBeanPostProcessor’s methods are
invoked by the Spring container.

The init method
call in the sequence diagram represents a call to the initialization method of
the bean. The sequence diagram shows that the MyBeanPostProcessor instance is
created before the ABean bean instance is created. As a BeanPostProcessor implementation is
configured like any other bean, if MyBeanPostProcessor defines an
initialization method, container invokes the initialization method of the MyBeanPostProcessor instance. After ABean’s instance is created, setter methods of the ABean instance
are invoked by the Spring container to satisfy its dependencies, and to provide
the bean instance with the required configuration information. After properties
are set, but before ABean’s initialization method is invoked, the Spring container invokes MyBeanPostProcessor’s postProcessBeforeInitialization method. After ABean’s initialization method is invoked, MyBeanPostProcessor’s postProcessAfterInitialization method is called by the Spring container.

Figure 5-1 – The Spring container invokes MyBeanPostProcessor’s methods before and after the initialization of ABean’s initialization method

It’s only
after invocation of postProcessAfterInitialization method, a bean instance is considered completely initialized by the Spring
container. For instance, if a BBean bean is dependent on ABean, container will inject ABean instance
into BBean only after MyBeanPostProcessor’s postProcessAfterInitialization
is invoked for both ABean and BBean instances.

You should
note that if the bean definition for a BeanPostProcessor bean specifies that
it should be lazily created (refer <bean> element’s lazy-init
attribute or <beans> element’s default-lazy-init
attribute in section 2-5 of chapter 2), the
Spring container ignores lazy initialization configuration and creates the BeanPostProcessor bean instance before
creating instances of singleton-scoped beans defined in the application context
XML file. You should note that the beans that implement BeanFactoryPostProcessor interface (explained in section 5-4) are created before the beans that implement BeanPostProcessor interface.

Let’s now
look at some example scenarios in which you can use Spring’s BeanPostProcessor.

IMPORT chapter 5/ch05-bankapp-beanpostprocessor (This project shows the MyBank application
that uses BeanPostProcessor implementations to validate bean instances
and to resolve bean dependencies. To verify that the BeanPostProcessor implementations function correctly, execute the main method of
the BankApp class of this project.)

BeanPostProcessor example –
Validating bean instances

In a
Spring application, you may want to verify that a bean instance is configured
correctly before it is injected into dependent beans or accessed by other
objects in the application. Let’s see how we can use a BeanPostProcessor implementation to give an opportunity to each bean instance to
validate its configuration before the bean instance is made available to
dependent beans or other application objects.

The
following example listing shows the MyBank’s InstanceValidator interface that must
be implemented by beans whose configuration we want to validate using a BeanPostProcessor implementation:

Example listing 5-9 – InstanceValidator interface

Project
– ch05-bankapp-beanpostprocessor

Source location - src/main/java/sample/spring/chapter05/bankapp/common

package sample.spring.chapter05.bankapp.common;

public interface InstanceValidator {

 void validateInstance();

}

InstanceValidator interface defines a
validateInstance method that verifies whether the bean instance was correctly
initialized or not. We’ll soon see that the validateInstance method is invoked by
a BeanPostProcessor implementation.

The
following example listing shows the FixedDepositDaoImpl class that
implements InstanceValidator interface:

Example listing 5-10 – FixedDepositDaoImpl class

Project
– ch05-bankapp-beanpostprocessor

Source location - src/main/java/sample/spring/chapter05/bankapp/dao

package sample.spring.chapter05.bankapp.dao;

import org.apache.log4j.Logger;

import sample.spring.chapter05.bankapp.common.InstanceValidator;

public class FixedDepositDaoImpl implements
FixedDepositDao, InstanceValidator {

 private static Logger logger =
Logger.getLogger(FixedDepositDaoImpl.class);

 private DatabaseConnection connection;

 public FixedDepositDaoImpl() {

 logger.info("FixedDepositDaoImpl's
constructor invoked");

 }

 public void initializeDbConnection()
{

 logger.info("FixedDepositDaoImplís
initializeDbConnection method invoked");

 connection =
DatabaseConnection.getInstance();

 }

 @Override

 public void validateInstance() {

 logger.info("Validating
FixedDepositDaoImpl instance");

 if(connection == null) {

 logger.error("Failed to
obtain DatabaseConnection instance");

 }

 }

}

In the
above example listing, the initializeDbConnection method is the initialization method that retrieves an instance of DatabaseConnection by calling getInstance static method of DatabaseConnection class. The connection attribute is null if FixedDepositDaoImpl instance fails to retrieve an instance of DatabaseConnection. If connection attribute is null, the validateInstance method logs an error message indicating that the FixedDepositDaoImpl instance is not correctly initialized. As the initializeDbConnection initialization method sets the value of connection
attribute, the validateInstance method must be invoked after the initializeDbConnection method. In a real world application development scenario, if a bean
instance is not configured correctly, the validateInstance method may take some
corrective action or throw a runtime exception to stop the application from
starting up. For simplicity, the validateInstance method logs an error
message if a bean instance is not configured correctly.

The
following example listing shows the InstanceValidationBeanPostProcessor
class that implements Spring’s BeanPostProcessor interface, and is responsible for invoking validateInstance method of newly created beans:

Example listing 5-11 – InstanceValidationBeanPostProcessor class

Project
– ch05-bankapp-beanpostprocessor

Source location - src/main/java/sample/spring/chapter05/bankapp/postprocessor

package sample.spring.chapter05.bankapp.postprocessor;

import
org.springframework.beans.BeansException;

import
org.springframework.beans.factory.config.BeanPostProcessor;

import org.springframework.core.Ordered;

public class
InstanceValidationBeanPostProcessor implements BeanPostProcessor, Ordered
{

 private static Logger logger =
Logger.getLogger(InstanceValidationBeanPostProcessor.class);

 private int order;

 public
InstanceValidationBeanPostProcessor() {

 logger.info("Created
InstanceValidationBeanPostProcessor instance");

 }

 @Override

 public Object
postProcessBeforeInitialization(Object bean, String beanName)

 throws BeansException {

 logger.info("postProcessBeforeInitialization
method invoked");

 return bean;

 }

 @Override

 public Object
postProcessAfterInitialization(Object bean, String beanName)

 throws BeansException {

 logger.info("postProcessAfterInitialization
method invoked");

 if (bean instanceof
InstanceValidator) {

 ((InstanceValidator)
bean).validateInstance();

 }

 return bean;

 }

 public void setOrder(int order) {

 this.order = order;

 }

 @Override

 public int getOrder() {

 return order;

 }

}

The above
example listing shows that the InstanceValidationBeanPostProcessor class implements Spring’s BeanPostProcessor and Ordered
interfaces. The postProcessBeforeInitialization method simply returns the bean instance passed to the method. In
the postProcessAfterInitialization method, if the bean instance is found to be of type InstanceValidator, the bean instance’s validateInstance method is invoked.
This means that if a bean implements InstanceValidator interface, InstanceValidationBeanPostProcessor calls validateInstance method of the bean instance after
the initialization method of the bean instance is invoked by the Spring
container.

The Ordered
interface defines a getOrder method which returns an integer value. The integer value returned
by the getOrder method determines the priority of a BeanPostProcessor implementation with
respect to other BeanPostProcessor implementations configured in the application context XML file. A BeanPostProcessor with higher order value is considered at a lower
priority, and is executed after the
BeanPostProcessor implementations with lower order values are executed. As we want the integer value returned by
the getOrder method to be configured as a bean property, a setOrder
method and an order instance variable are defined in the InstanceValidationBeanPostProcessor
class.

The
following example listing shows bean definitions for InstanceValidationBeanPostProcessor class:

Example listing 5-12 – InstanceValidationBeanPostProcessor bean definition

Project
– ch05-bankapp-beanpostprocessor

Source location -
src/main/resources/META-INF/spring

<bean
class="…...bankapp.postprocessor.InstanceValidationBeanPostProcessor">

 <property
name="order" value="1" />

</bean>

In the
above bean definition, <bean> element’s id attribute is not specified because we typically don’t want InstanceValidationBeanPostProcessor to be a dependency of any other bean. The <property> element sets the value of order property to 1.

Let’s now
look at a BeanPostProcessor implementation that is used for resolving bean dependencies.

BeanPostProcessor example –
Resolving bean dependencies

In chapter
4, we saw that if a bean implements Spring’s ApplicationContextAware interface, it
can programmatically obtain bean instances using ApplicationContext’s getBean
method. Implementing ApplicationContextAware interface couples the application code with Spring, and for that
reason it is not recommended to implement ApplicationContextAware interface. In
this section, we’ll look at a BeanPostProcessor implementation that provides beans with an object that wraps an ApplicationContext instance, resulting in application code that is not directly dependent on ApplicationContextAware and ApplicationContext interfaces of Spring.

The
following example listing shows the MyBank’s DependencyResolver interface that is
implemented by beans who want to programmatically retrieve their dependencies
from the ApplicationContext:

Example listing 5-13 – DependencyResolver interface

Project
– ch05-bankapp-beanpostprocessor

Source location - src/main/java/sample/spring/chapter05/bankapp/common

package sample.spring.chapter05.bankapp.common;

public interface DependencyResolver {

 void
resolveDependency(MyApplicationContext myApplicationContext);

}

DependencyResolver defines a resolveDependency method that accepts a MyApplicationContext object – a
wrapper around ApplicationContext object. We’ll soon see that the resolveDependency method is invoked
by a BeanPostProcessor implementation.

The
following example listing shows the FixedDepositServiceImpl class that
implements DependencyResolver interface:

Example listing 5-14 – FixedDepositServiceImpl class

Project
– ch05-bankapp-beanpostprocessor

Source location - src/main/java/sample/spring/chapter05/bankapp/service

package sample.spring.chapter05.bankapp.service;

import sample.spring.chapter05.bankapp.common.DependencyResolver;

import sample.spring.chapter05.bankapp.common.MyApplicationContext;

public class FixedDepositServiceImpl
implements FixedDepositService, DependencyResolver {

 private FixedDepositDao
fixedDepositDao;

 @Override

 public void
resolveDependency(MyApplicationContext myApplicationContext) {

 FixedDepositDao =
myApplicationContext.getBean(FixedDepositDao.class);

 }

}

The FixedDepositServiceImpl class defines a FixedDepositDao attribute of type FixedDepositDao. The resolveDependency method is responsible for obtaining an instance of FixedDepositDao object from MyApplicationContext (a wrapper around Spring’s ApplicationContext object) and
assigning it to the FixedDepositDao attribute.

The
following example listing shows that the DependencyResolutionBeanPostProcessor
class invokes resolveDependency method on beans that implement DependencyResolver interface:

Example listing 5-15 – DependencyResolutionBeanPostProcessor class

Project
– ch05-bankapp-beanpostprocessor

Source location - src/main/java/sample/spring/chapter05/bankapp/postprocessor

package sample.spring.chapter05.bankapp.postprocessor;

import
org.springframework.beans.factory.config.BeanPostProcessor;

import org.springframework.core.Ordered;

import sample.spring.chapter05.bankapp.common.MyApplicationContext;

public class
DependencyResolutionBeanPostProcessor implements BeanPostProcessor,

 Ordered {

 private MyApplicationContext
myApplicationContext;

 private int order;

 public void
setMyApplicationContext(MyApplicationContext myApplicationContext) {

 this.myApplicationContext =
myApplicationContext;

 }

 public void setOrder(int order) {

 this.order = order;

 }

 @Override

 public int getOrder() {

 return order;

 }

 @Override

 public Object
postProcessBeforeInitialization(Object bean, String beanName)

 throws BeansException {

 if (bean instanceof
DependencyResolver) {

 ((DependencyResolver) bean).resolveDependency(myApplicationContext);

 }

 return bean;

 }

 @Override

 public Object
postProcessAfterInitialization(Object bean, String beanName)

 throws BeansException {

 return bean;

 }

}

The DependencyResolutionBeanPostProcessor class implements Spring’s BeanPostProcessor and Ordered
interfaces. The myApplicationContext attribute (of type MyApplicationContext) represents a dependency of DependencyResolutionBeanPostProcessor.
The postProcessBeforeInitialization method invokes resolveDependency method on bean instances that implement DependencyResolver interface, passing the MyApplicationContext object as
argument. The postProcessAfterInitialization method simply returns the bean instance passed to the method.

The
following example listing shows the MyApplicationContext class that acts
as a wrapper around Spring’s ApplicationContext object:

Example listing 5-16 – MyApplicationContext class

Project
– ch05-bankapp-beanpostprocessor

Location - src/main/java/sample/spring/chapter05/bankapp/common

package sample.spring.chapter05.bankapp.common;

import
org.springframework.context.ApplicationContext;

import
org.springframework.context.ApplicationContextAware;

public class MyApplicationContext
implements ApplicationContextAware {

 private ApplicationContext
applicationContext;

 @Override

 public void
setApplicationContext(ApplicationContext applicationContext)

 throws BeansException {

 this.applicationContext =
applicationContext;

 }

 public <T> T
getBean(Class<T> klass) {

 return
applicationContext.getBean(klass);

 }

}

The MyApplicationContext class implements Spring’s ApplicationContextAware interface to
obtain reference to the ApplicationContext object in which the bean is deployed. The MyApplicationContext class defines a getBean method that returns a bean instance with the given name from the ApplicationContext instance.

The
following example listing shows the bean definitions for DependencyResolutionBeanPostProcessor and MyApplicationContext classes:

Example listing 5-17 – applicationContext.xml

Project
– ch05-bankapp-beanpostprocessor

Source location -
src/main/resources/META-INF/spring

 <bean
class=".....postprocessor.DependencyResolutionBeanPostProcessor">

 <property
name="myApplicationContext" ref="myApplicationContext"
/>

 <property
name="order" value="0" />

 </bean>

 <bean
id="myApplicationContext" class=".....bankapp.common.MyApplicationContext"
/>

The bean
definition for DependencyResolutionBeanPostProcessor class shows that its order property value is set to 0. Example
listing 5-12 showed that the InstanceValidationBeanPostProcessor’s order property value is 1. As lower order property value means higher priority, the Spring
container applies DependencyResolutionBeanPostProcessor to a bean instance, followed by applying the InstanceValidationBeanPostProcessor.

The
following example listing shows the main method of BankApp class
that checks the functionality of DependencyResolutionBeanPostProcessor
and InstanceValidationBeanPostProcessor:

Example listing 5-18 – BankApp class

Project
– bankapp-beanpostprocessor

Location - src/main/java/sample/spring/chapter05/bankapp

package sample.spring.chapter05.bankapp;

public class BankApp {

 public static void main(String args[])
throws Exception {

 AbstractApplicationContext
context = new ClassPathXmlApplicationContext(

 "classpath:META-INF/spring/applicationContext.xml");

 context.registerShutdownHook();

 FixedDepositService
FixedDepositService = context.getBean(FixedDepositService.class);

 FixedDepositService.createFixedDeposit(new
FixedDepositDetails(1, 1000, 12,

 "someemail@somedomain.com"));

 }

}

BankApp’s main method
retrieves an instance of FixedDepositService from the ApplicationContext and executes FixedDepositService’s createFixedDeposit method. When you execute BankApp’s main method,
you’ll notice that the Spring container creates instance of DependencyResolutionBeanPostProcessor and InstanceValidationBeanPostProcessor beans before creating instance of any other bean defined in the application
context XML file. And, the DependencyResolutionBeanPostProcessor (order value 0) is applied to a newly created bean instance before the
InstanceValidationBeanPostProcessor (order value 1) is applied.

You should
note that the Spring container doesn’t apply a BeanPostProcessor implementation to
other BeanPostProcessor implementations. For instance, in the MyBank application, DependencyResolutionBeanPostProcessor’s postProcessBeforeInitialization and
postProcessAfterInitialization methods are not invoked by the Spring container when an instance of InstanceValidationBeanPostProcessor is created.

Let’s now
look at the behavior of a BeanPostProcessor implementation for a bean that implements FactoryBean
interface.

BeanPostProcessor behavior for FactoryBeans

In section
3-9 of chapter 3, we discussed that a bean that implements Spring’s FactoryBean
interface represents a factory for creating bean instances. The question that
you might be asking at this time is whether a BeanPostProcessor implementation
applies to a FactoryBean implementation or to the bean instances created by the FactoryBean
implementation. Later in this section, we’ll see that a BeanPostProcessor’s postProcessBeforeInitialization and postProcessAfterInitialization methods are invoked for a FactoryBean instance created by the
Spring container. And, only postProcessAfterInitialization method is invoked for bean instances created by a FactoryBean.

The
following example listing shows the EventSenderFactoryBean (a FactoryBean
implementation) class of MyBank application that creates instances of EventSender bean:

Example listing 5-19 – EventSenderFactoryBean class

Project
– ch05-bankapp-beanpostprocessor

Location - src/main/java/sample/spring/chapter05/bankapp/factory

package sample.spring.chapter05.bankapp.factory;

import
org.springframework.beans.factory.FactoryBean;

import org.springframework.beans.factory.InitializingBean;

public class EventSenderFactoryBean
implements FactoryBean<EventSender>, InitializingBean {

 @Override

 public EventSender getObject()
throws Exception {

 logger.info("getObject method
of EventSenderFactoryBean invoked");

 return new EventSender();

 }

 @Override

 public Class<?> getObjectType() {

 return EventSender.class;

 }

 @Override

 public boolean isSingleton() {

 return false;

 }

 @Override

 public void afterPropertiesSet()
throws Exception {

 logger.info("afterPropertiesSet
method of EventSenderFactoryBean invoked");

 }

}

EventSenderFactoryBean class
implements Spring’s InitializingBean and FactoryBean interfaces. The getObject method returns an instance of EventSender object. As the isSingleton
method returns false, EventSenderFactoryBean’s
getObject method is invoked each time EventSenderFactoryBean receives
request for an EventSender object.

The
following example listing shows the main method of BankApp class
of ch05-bankapp-beanpostprocessor project that retrieves EventSender instances from the EventSenderFactoryBean:

Example listing 5-20 – BankApp class

Project
– ch05-bankapp-beanpostprocessor

Location - src/main/java/sample/spring/chapter05/bankapp

package sample.spring.chapter05.bankapp;

public class BankApp {

 public static void main(String args[])
throws Exception {

 AbstractApplicationContext
context = new ClassPathXmlApplicationContext(

 "classpath:META-INF/spring/applicationContext.xml");

 context.registerShutdownHook();

 context.getBean("eventSenderFactory");

 context.getBean("eventSenderFactory");

 }

}

In the
above example listing, the ApplicationContext’s getBean method is called twice to retrieve two distinct EventSender
instances from the EventSenderFactoryBean. If you execute BankApp’s main method, you’ll see the following messages printed on the console:

Created
EventSenderFactoryBean

DependencyResolutionBeanPostProcessor's
postProcessBeforeInitialization method invoked
for.....EventSenderFactoryBean

InstanceValidationBeanPostProcessor's
postProcessBeforeInitialization method invoked for
.....EventSenderFactoryBean

afterPropertiesSet
method of EventSenderFactoryBean invoked

DependencyResolutionBeanPostProcessor's
postProcessAfterInitialization method invoked
for.....EventSenderFactoryBean

InstanceValidationBeanPostProcessor's
postProcessAfterInitialization method invoked for bean
.....EventSenderFactoryBean

The above
output shows that a BeanPostProcessor’s postProcessBeforeInitialization and postProcessAfterInitialization methods are invoked for the EventSenderFactoryBean instance
created by the Spring container.

Execution
of BankApp’s main method also shows the following output on the console:

getObject
method of EventSenderFactoryBean invoked

DependencyResolutionBeanPostProcessor's
postProcessAfterInitialization method invoked for.....EventSender

getObject
method of EventSenderFactoryBean invoked

DependencyResolutionBeanPostProcessor's
postProcessAfterInitialization method invoked for.....EventSender

The above output shows that only the postProcessAfterInitialization method of a BeanPostProcessor is invoked for the EventSender instance created by the EventSenderFactoryBean. If you want,
you can make modifications to an EventSender instance in the postProcessAfterInitialization method.

Let’s now
look at Spring’s built-in RequiredAnnotationBeanPostProcessor that you can use to ensure that required
(or mandatory) bean properties are configured in the application context XML
file.

RequiredAnnotationBeanPostProcessor

If the
setter-method for a bean property is annotated with Spring’s @Required
annotation, Spring’s RequiredAnnotationBeanPostProcessor (a BeanPostProcessor implementation) checks if the bean property is configured in the
application context XML file.

NOTE You should note that the RequiredAnnotationBeanPostProcessor is not automatically registered with the Spring
container, you need to register it explicitly by defining it in the application
context XML file.

The
following example listing shows an example usage of @Required
annotation:

Example listing 5-21 – @Required annotation usage

import
org.springframework.beans.factory.annotation.Required;

public class FixedDepositServiceImpl
implements FixedDepositService {

 private FixedDepositDao fixedDepositDao;

 @Required

 public void
setFixedDepositDao(FixedDepositDao fixedDepositDao) {

 this.fixedDepositDao =
fixedDepositDao;

 }

}

In the
above example listing, the setFixedDepositDao setter-method for FixedDepositDao property is annotated with @Required annotation. If you have
defined RequiredAnnotationBeanPostProcessor in the application context XML file, the RequiredAnnotationBeanPostProcessor will check if you have specified a <property> element (or used p-namespace)
to set the value of FixedDepositDao property. If you haven’t configured the FixedDepositDao property in the bean definition for the FixedDepositServiceImpl class in the application context XML file, it’ll result in an
exception. This shows that you can use RequiredAnnotationBeanPostProcessor
to ensure that all bean instances in your application are configured properly
in the application context XML file.

RequiredAnnotationBeanPostProcessor
only ensures that a bean property is configured in the bean definition. It doesn’t ensure that the configured property value is correct. For instance,
you can configure a property’s value as null, instead of a valid value. For
this reason, beans may still need to implement initialization methods to check
if the properties are correctly set.

Let’s now
look at Spring’s DestructionAwareBeanPostProcessor interface that is a sub-interface of Spring’s BeanPostProcessor interface.

DestructionAwareBeanPostProcessor

So far we
have seen that a BeanPostProcessor implementation is used for interacting with newly created bean
instances. In some scenarios you may also want to interact with a bean instance
before it is destroyed. To interact with a bean instance before it is
destroyed, configure a bean that implements Spring’s DestructionAwareBeanPostProcessor interface in the application context XML file. DestructionAwareBeanPostProcessor is a sub-interface of BeanPostProcessor interface and
defines the following method:

void postProcessBeforeDestruction(Object
bean, String beanName)

The postProcessBeforeDestruction method accepts the bean instance, which is about to be destroyed by
the Spring container, and its name as arguments. Spring container invokes the postProcessBeforeDestruction method for each singleton-scoped bean instance before the bean instance is destroyed by the Spring container. Usually,
the postProcessBeforeDestruction method is used to invoke custom destruction methods on the bean
instances. It is important to note that the postProcessBeforeDestruction method
is not called for prototype-scoped beans.

We’ll now
look at Spring’s BeanFactoryPostProcessor interface, which allows you to make modifications to bean
definitions.

5-4 Modifying
bean definitions using BeanFactoryPostProcessor

Spring’s BeanFactoryPostProcessor interface is implemented by classes that want to make modifications
to bean definitions. A BeanFactoryPostProcessor is executed after bean definitions are loaded by the Spring container, but before any
bean instance is created. A BeanFactoryPostProcessor is created before any other bean defined in the application context XML file, giving
the BeanFactoryPostProcessor an opportunity to make modifications to bean definitions of other
beans. You configure a BeanFactoryPostProcessor implementation in the application context XML file like any other
Spring bean.

NOTE Instead of bean definitions, if you want to
modify or interact with bean instances, use a BeanPostProcessor (refer to section 5-3) and not a BeanFactoryPostProcessor.

BeanFactoryPostProcessor interface
defines a single method - postProcessBeanFactory.
This method accepts an argument of type ConfigurableListableBeanFactory that can be used to obtain and modify bean definitions loaded by
the Spring container. It is possible to create a bean instance inside postProcessBeanFactory method itself by calling ConfigurableListableBeanFactory’s getBean
method, but bean creation inside postProcessBeanFactory method is not recommended. It is important to note that BeanPostProcessors (refer section 5-3) are not
executed for bean instances created inside postProcessBeanFactory method.

It is
important to note that a
ConfigurableListableBeanFactory provides access
to the Spring container just like the ApplicationContext object. ConfigurableListableBeanFactory additionally allows you to configure the Spring container, iterate
over beans, and modify bean definitions. For instance, using ConfigurableListableBeanFactory object you can register PropertyEditorRegistrars (refer
section 3-6 of chapter 3), register BeanPostProcessors, and so on. Later
in this section, we’ll see how ConfigurableListableBeanFactory object is used to modify bean definitions.

Let’s now
look at how we can use a BeanFactoryPostProcessor to modify bean definitions.

IMPORT chapter
5/ch05-bankapp-beanfactorypostprocessor (This project shows the MyBank application that uses a BeanFactoryPostProcessor implementation to disable
autowiring across the application, and log an error message if a singleton-scoped
bean is found to be dependent on a prototype-scoped bean. To verify that the BeanFactoryPostProcessor implementation functions correctly, execute
the main method of the BankApp
class of this project.)

BeanFactoryPostProcessor example

In the
previous chapter, we saw that autowiring hides the overall structure of the
application (refer section 4-6 of chapter 4). We also discussed that instead of
using <property> element to specify that a singleton-scoped bean is dependent on a
prototype-scoped bean, you should use <lookup-method> or <replaced-method> element (refer section 4-4 and 4-5 of chapter 4 for more details)
to programmatically obtain a prototype-scoped dependency of a singleton-bean.
We’ll now look at a BeanFactoryPostProcessor implementation that makes beans unavailable for autowiring (refer <bean> element’s autowire-candidate attribute described in section 4-6 of chapter 4) and logs an error
message if it finds a singleton-scoped bean is dependent on a prototype-scoped
bean. For simplicity, we assume that a singleton-scoped bean uses <property> element to specify that it is dependent on a prototype-scoped bean.

NOTE
A bean that implements Spring’s BeanFactoryPostProcessor interface is a special bean type; the Spring container automatically
detects and executes a BeanFactoryPostProcessor bean.

The
following example listing shows the MyBank’s ApplicationConfigurer class that
implements BeanFactoryPostProcessor interface:

Example listing 5-22 – ApplicationConfigurer class – a BeanFactoryPostProcessor implementation

Project
– ch05-bankapp-beanfactorypostprocessor

Source location - src/main/java/sample/spring/chapter05/bankapp/postprocessor

package sample.spring.chapter05.bankapp.postprocessor;

import org.springframework.beans.factory.config.BeanDefinition;

import
org.springframework.beans.factory.config.BeanFactoryPostProcessor;

import
org.springframework.beans.factory.config.ConfigurableListableBeanFactory;

public class ApplicationConfigurer implements
BeanFactoryPostProcessor {

 public ApplicationConfigurer() {

 logger.info("Created
ApplicationConfigurer instance");

 }

 @Override

 public void postProcessBeanFactory(

 ConfigurableListableBeanFactory
beanFactory) throws BeansException {

 String[] beanDefinitionNames =
beanFactory.getBeanDefinitionNames();

 // -- get all the bean definitions

 for (int i = 0; i <
beanDefinitionNames.length; i++) {

 String beanName =
beanDefinitionNames[i];

 BeanDefinition
beanDefinition = beanFactory.getBeanDefinition(beanName);

 beanDefinition.setAutowireCandidate(false);

 // -- obtain dependencies of a
bean

 if
(beanDefinition.isSingleton()) {

 if (hasPrototypeDependency(beanFactory,
beanDefinition)) {

logger.error("Singleton-scoped " + beanName

 + " bean is
dependent on a prototype-scoped bean.");

 }

 }

 }

 }

}

The
following sequence of actions is performed by the postProcessBeanFactory method:

1.
First, the postProcessBeanFactory method calls ConfigurableListableBeanFactory’s getBeanDefinitionNames method to obtain names of all the bean definitions loaded by the
Spring container. You should note that the name of a bean definition is the
value of <bean> element’s id attribute.

2.
Once the names of all the bean definitions are
obtained, the postProcessBeanFactory method invokes ConfigurableListableBeanFactory’s getBeanDefinition
method to obtain the BeanDefinition object corresponding
to each bean definition. The getBeanDefinition method accepts a bean definition name (obtained in step 1) as
argument.

3.
A BeanDefinition object represents a
bean definition, and can be used to modify bean configuration. For each bean
definition loaded by the Spring container, the postProcessBeanFactory method invokes
BeanDefinition’s setAutowireCandidate method to make all the beans unavailable for autowiring.

4.
BeanDefinition’s isSingleton method returns true if a bean definition is for a singleton-scoped bean. If a bean
definition is for a singleton-scoped bean, the postProcessBeanFactory method invokes
hasPrototypeDependency method to check if the singleton-scoped bean is dependent on any
prototype-scoped bean. And, if the singleton-scoped bean is dependent on a
prototype-scoped bean, the postProcessBeanFactory
method logs an error message.

The
following example listing shows the implementation of ApplicationConfigurer’s
hasPrototypeDependency method that returns true if a bean is dependent on a prototype-scoped bean:

Example listing 5-23 – ApplicationConfigurer’s
hasPrototypeDependency method

Project – ch05-bankapp-beanfactorypostprocessor

Source location - src/main/java/sample/spring/chapter05/bankapp/postprocessor

import
org.springframework.beans.MutablePropertyValues;

import
org.springframework.beans.PropertyValue;

import org.springframework.beans.factory.config.RuntimeBeanReference;

public class ApplicationConfigurer
implements BeanFactoryPostProcessor {

 private boolean
hasPrototypeDependency(ConfigurableListableBeanFactory beanFactory,

 BeanDefinition
beanDefinition) {

 boolean isPrototype = false;

 MutablePropertyValues
mutablePropertyValues = beanDefinition.getPropertyValues();

 PropertyValue[] propertyValues =
mutablePropertyValues.getPropertyValues();

 for (int j = 0; j <
propertyValues.length; j++) {

 if
(propertyValues[j].getValue() instanceof RuntimeBeanReference) {

 String
dependencyBeanName = ((RuntimeBeanReference) propertyValues[j]

 .getValue()).getBeanName();

 BeanDefinition
dependencyBeanDef = beanFactory

.getBeanDefinition(dependencyBeanName);

 if
(dependencyBeanDef.isPrototype()) {

 isPrototype = true;

 break;

 }

 }

 }

 return isPrototype;

 }

}

The hasPrototypeDependency method checks if the bean represented by BeanDefinition
argument is dependent on a prototype-scoped bean. The ConfigurableListableBeanFactory argument provides access to bean definitions loaded by the Spring
container. The following sequence of actions is performed by hasPrototypeDependency method to find if the bean represented by the BeanDefinition
argument has a prototype-scoped dependency:

1.
First, hasPrototypeDependency method calls BeanDefinition’s
getPropertyValues method to obtain bean properties defined by <property> elements. BeanDefinition’s getPropertyValues returns an object of type MutablePropertyValues which
you can use to modify bean properties. For instance, you can add additional
properties to the bean definition by using addPropertyValue and addPropertyValues methods of MutablePropertyValues.

2.
As we want to iterate over all the bean
properties and check if any bean property refers to a prototype-scoped bean,
the getPropertyValues method of
MutablePropertyValues is invoked to retrieve an array of PropertyValue objects. A PropertyValue
object holds information about a bean property.

3.
If a bean property refers to a Spring bean,
calling PropertyValue’s getValue method returns an instance of RuntimeBeanReference object
that holds name of the referenced bean. As we are interested in bean properties
that reference Spring beans, the return value of PropertyValue’s getValue method
is checked if it represents an instance of RuntimeBeanReference type. If it
does, the object returned by PropertyValue’s getValue method is cast to
RuntimeBeanReference type, and the name of the
referenced bean is obtained by calling the RuntimeBeanReference’s getBeanName
method.

4.
Now, that we have the name of the bean
referenced by the bean property, the BeanDefinition object for the
referenced bean is obtained by calling ConfigurableListableBeanFactory’s getBeanDefinition method. You can check if the referenced bean is a prototype-scoped
bean by calling BeanDefinition’s isPrototype method.

The
following sequence diagram summarizes how hasPrototypeDependency method works:

Figure 5-2 – hasPrototypeDependency method iterates over bean definitions of dependencies, and returns true if a
prototype-scoped dependency is found

In the
above sequence diagram ConfigurableListableBeanFactory object has been depicted as ‘Bean factory’ object.

The
following example listing shows the application context XML file of ch05-bankapp-beanfactorypostprocessor project that contains bean definitions for ApplicationConfigurer class (a BeanFactoryPostProcessor implementation), InstanceValidationBeanPostProcessor class (a BeanPostProcessor implementation), along with bean definitions for
application-specific objects:

Example listing 5-24 – applicationContext.xml - BeanFactoryPostProcessor bean definition

Project – ch05-bankapp-beanfactorypostprocessor

Source location - src/main/resources/META-INF/spring

<beans>

 <bean id="FixedDepositDao"

 class="sample.spring.chapter05.bankapp.dao.FixedDepositDaoImpl".....
>

 <property
name=“fixedDepositDetails" ref="FixedDepositDetails" />

 </bean>

 <bean
id="FixedDepositDetails"

 class="sample.spring.chapter05.bankapp.domain.FixedDepositDetails"

 scope="prototype"
/>

 <bean
class=".....postprocessor.InstanceValidationBeanPostProcessor">

 <property name="order"
value="1" />

 </bean>

 <bean

 class="sample.spring.chapter05.bankapp.postprocessor.ApplicationConfigurer"
/>

</beans>

In the
bean definitions shown above, the singleton-scoped FixedDepositDao bean is dependent on the prototype-scoped FixedDepositDetails bean.

If you
execute the main method of BankApp class of ch05-bankapp-beanfactorypostprocessor project, you’ll see the following output on the console:

Created
ApplicationConfigurer instance

Singleton-scoped
FixedDepositDao bean is dependent on a prototype-scoped bean.

Created
InstanceValidationBeanPostProcessor instance

The above
output shows that the Spring container creates ApplicationConfigurer (a BeanFactoryPostProcessor) and executes ApplicationConfigurer’s postProcessBeanFactory method before creating InstanceValidationBeanPostProcessor (a BeanPostProcessor) instance. It is important to note that the beans that implement
the BeanFactoryPostProcessor interface are processed before
beans that implement the BeanPostProcessor interface. For this reason, you can’t
use a BeanPostProcessor to make modifications to a BeanFactoryPostProcessor instance.
The BeanFactoryPostProcessor gives you the opportunity to modify bean definitions loaded by the
Spring container, and the BeanFactoryPostProcessor gives you the opportunity to make modifications to newly created
bean instances.

Let’s now
look at some of the similarities between BeanPostProcessors and BeanFactoryPostProcessors:

·
you can configure multiple BeanFactoryPostProcessors in the application context XML file. To control the order in which
BeanFactoryPostProcessors are executed by the Spring container, implement Spring’s Ordered
interface (refer section 5-3 to know more about Ordered interface).

·
even if you specify that a BeanFactoryPostProcessor implementation is lazily initialized by the Spring container, BeanFactoryPostProcessors are created when the Spring container instance is created.

In chapter
3, we looked at CustomEditorConfigurer – a BeanFactoryPostProcessor implementation that Spring provides out-of-the-box for registering
custom property editors. Let’s now look at some more BeanFactoryPostProcessor implementations that Spring provides out-of-the-box.

PropertySourcesPlaceholderConfigurer

So far we
have seen bean definition examples in which <property> or <constructor-arg> element’s value attribute is used to specify the actual string value of a bean
property or a constructor argument. PropertySourcesPlaceholderConfigurer
(a BeanFactoryPostProcessor) let’s you specify the actual string value of bean properties and
constructor arguments in a properties file. In the bean definition, you only
specify property
placeholders (of the form ${<property_name_in_properties_file>}) as the
value of <property> or <constructor-arg> element’s value attribute. When bean definitions are loaded by the Spring
container, the PropertySourcesPlaceholderConfigurer pulls the actual values from the properties file and replaces the
property placeholders in the bean definitions with actual values.

IMPORT chapter 5/ch05-propertySourcesPlaceholderConfigurer-example (This project shows a Spring
application that uses Spring’s PropertySourcesPlaceholderConfigurer to set bean properties from the properties specified in external
properties files. To verify that the PropertySourcesPlaceholderConfigurer functions correctly, execute the main method of
the SampleApp class of this project.)

The
following example listing shows bean definitions for DataSource and
WebServiceConfiguration classes that use property placeholders:

Example listing 5-25 – applicationContext.xml - Bean definitions that use property placeholders

Project – ch05-propertySourcesPlaceholderConfigurer-example

Source location - src/main/resources/META-INF/spring

 <bean id="datasource"
class="sample.spring.chapter05.domain.DataSource">

 <property
name="url" value="${database.url}" />

 <property
name="username" value="${database.username}" />

 <property
name="password" value="${database.password}" />

 <property
name="driverClass" value="${database.driverClass}" />

 </bean>

 <bean
id="webServiceConfiguration"

class="sample.spring.chapter05.domain.WebServiceConfiguration">

 <property
name="webServiceUrl" value="${webservice.url}" />

 </bean>

The above example
listing shows that each <property> element’s value attribute specifies a property placeholder. When bean definitions
are loaded by the Spring container, PropertySourcesPlaceholderConfigurer
replaces property placeholders with values from a properties file. For
instance, if a database.username property is defined in a properties file, the value of database.username property replaces the ${database.username} property
placeholder of dataSource bean.

The bean
definition for the PropertySourcesPlaceholderConfigurer specifies properties files to be searched for finding replacement
for a property placeholder, as shown in the following example listing:

Example listing 5-26 – applicationContext.xml-PropertySourcesPlaceholderConfigurer bean definition

Project – ch05-propertySourcesPlaceholderConfigurer-example

Source location - src/main/resources/META-INF/spring

 <bean

class="org.springframework.context.support.PropertySourcesPlaceholderConfigurer">

 <property
name="locations">

 <list>

 <value>classpath:database.properties</value>

 <value>classpath:webservice.properties</value>

 </list>

 </property>

 <property
name="ignoreUnresolvablePlaceholders" value="false" />

 </bean>

PropertySourcesPlaceholderConfigurer’s
locations property specifies properties files to be searched for finding the
value for a property placeholder. In the above example listing, PropertySourcesPlaceholderConfigurer looks for the value of a property placeholder in database.properties and webservice.properties files. The ignoreUnresolvablePlaceholders property specifies whether PropertySourcesPlaceholderConfigurer
silently ignores or throws an exception in case a property placeholder value is
not found in any of the properties files specified by the locations
property. The value false indicates that the PropertySourcesPlaceholderConfigurer
will throw an exception if value for a property
placeholder is not found in database.properties or webservice.properties files.

The
following example listing shows the properties defined in database.properties and webservice.properties files:

Example listing 5-27 – Properties defined in database.properties and webservice.properties files

Project – ch05-propertySourcesPlaceholderConfigurer-example

Source location - src/main/resources/META-INF

database.properties file ------------------

database.url=some_url

database.username=some_username

database.password=some_password

database.driverClass=some_driverClass

webservice.properties
file ------------------

webservice.url=some_url

If you
compare the properties defined in database.properties and webservice.properties files with the property placeholders specified in datasource and
webServiceConfiguration bean definitions (refer example listing 5-25), you’ll notice that
for each property placeholder a property is defined in one of the properties files.

The main method of
SampleApp class of ch05-propertySourcesPlaceholderConfigurer-example project retrieves WebServiceConfiguration and DataSource beans from the ApplicationContext and prints their properties on the console. If you execute SampleApp’s main method,
you’ll see the following output on the console:

DataSource
[url=some_url, username=some_username, password=some_password,
driverClass=some_driverClass]

WebServiceConfiguration
[webServiceUrl=some_url]

The above
output shows:

·
DataSource’s url property is set to some_url, username to some_username, password to some_password
and driverClass to some_driverClass.

·
WebServiceConfiguration’s webServiceUrl property is set to some_url.

If you
remove a property from either database.properties or webservice.properties file, executing SampleApp’s main method will result in an exception.

Let’s now
look at localOverride property of PropertySourcesPlaceholderConfigurer.

localOverride property

If you
want local properties (set via <props> element) to override properties read from properties file, you can
set PropertySourcesPlaceholderConfigurer’s localOverride property to true.

IMPORT chapter 5/ch05-localoverride-example (This project shows a Spring
application that uses PropertySourcesPlaceholderConfigurer’s localOverride property. To run the application, execute
the main method of the SampleApp
class of this project.)

The
following example listing shows bean definitions for DataSource and
WebServiceConfiguration classes:

Example listing 5-28 – applicationContext.xml - Bean definitions that use property placeholders

Project – ch05-localOverride-example

Source location - src/main/resources/META-INF/spring

 <bean id="datasource"
class="sample.spring.chapter05.domain.DataSource">

 <property
name="url" value="${database.url}" />

 <property
name="username" value="${database.username}" />

 <property
name="password" value="${database.password}" />

 <property
name="driverClass" value="${database.driverClass}" />

 </bean>

 <bean
id="webServiceConfiguration"

class="sample.spring.chapter05.domain.WebServiceConfiguration">

 <property
name="webServiceUrl" value="${webservice.url}" />

 </bean>

The bean
definitions for DataSource and WebServiceConfiguration classes are same as we saw in example listing 5-25.

The
following example listing shows the properties defined in database.properties and webservice.properties files:

Example listing 5-29 – Properties defined in database.properties and webservice.properties files

Project – ch05-localOverride-example

Source location - src/main/resources/META-INF

database.properties file ------------------

database.url=some_url

database.username=some_username

webservice.properties
file ------------------

webservice.url=some_url

If you
compare the properties defined in database.properties and webservice.properties files with the property placeholders specified in datasource and
webServiceConfiguration bean definitions (refer example listing 5-28), you’ll notice that
properties are not defined for ${database.password} and ${database.driverClass} placeholders in the database.properties file.

The
following example listing shows the bean definition for PropertySourcesPlaceholderConfigurer class:

Example listing 5-30 – applicationContext.xml
- PropertySourcesPlaceholderConfigurer bean
definition

Project – ch05-localOverride-example

Source location - src/main/resources/META-INF/spring

 <bean

class="org.springframework.context.support.PropertySourcesPlaceholderConfigurer">

 <property
name="locations">

 <list>

<value>classpath:database.properties</value>

<value>classpath:webservice.properties</value>

 </list>

 </property>

 <property
name="properties">

 <props>

 <prop
key="database.password">locally-set-password</prop>

 <prop
key="database.driverClass">locally-set-driverClass</prop>

 <prop
key="webservice.url">locally-set-webServiceUrl</prop>

 </props>

 </property>

 <property
name="ignoreUnresolvablePlaceholders" value="false" />

 <property
name="localOverride" value="true" />

 </bean>

The properties
property of PropertySourcesPlaceholderConfigurer defines local properties. The database.password, database.driverClass and webservice.url properties are local properties. The localOverride property specifies
whether local properties take precedence over properties read from external
properties files. As the value of localOverride property is true, local
properties take precedence.

The main method of
SampleApp class in ch05-localOverride-example project retrieves WebServiceConfiguration and DataSource beans from the ApplicationContext and prints their properties on the console. If you execute SampleApp’s main method,
you’ll see the following output on the console:

DataSource
[url=some_url, username=some_username,
password=locally-set-password, driverClass=locally-set-driverClass]

WebServiceConfiguration
[webServiceUrl=locally-set-webServiceUrl]

The output
shows that the value of DataSource’s password and driverClass properties are locally-set-password and locally-set-driverClass, respectively. This means that the values for DataSource’s password and driverClass
properties come from the local properties defined by the PropertySourcesPlaceholderConfigurer bean (refer example listing 5-30). This shows that if the PropertySourcesPlaceholderConfigurer can’t find a property for a placeholder in the external properties
files, it searches for the property in the local properties defined by PropertySourcesPlaceholderConfigurer bean. The output also shows that the WebServiceConfiguration’s webServiceUrl
property value comes from the local properties defined by the PropertySourcesPlaceholderConfigurer bean (refer example listing 5-30). The value of PropertySourcesPlaceholderConfigurer’s localOverride property is set to true; therefore, the locally defined webservice.url property takes precedence over the webservice.url property read from the webservice.properties file.

NOTE Instead of using PropertySourcesPlaceholderConfigurer’s properties property, you can use <properties> element of Spring’s util schema (refer section 3-8 of chapter 3) or PropertiesFactoryBean (refer section 3-8 of chapter 3) to define
local properties.

Instead of
directly configuring the PropertySourcesPlaceholderConfigurer bean in your application context XML file, you can use the <property-placeholder> element of Spring’s context schema. The <property-placeholder> element configures a PropertySourcesPlaceholderConfigurer
instance. Let’s now look at the <property-placeholder> element in detail.

IMPORT chapter
5/ch05-property-placeholder-element-example (This project shows a Spring
application that uses the <property-placeholder> element. To run the application, execute
the main method of the SampleApp
class of this project.)

<property-placeholder> element

The
following example listing shows how the <property-placeholder> element
is used to configure a PropertySourcesPlaceholderConfigurer instance with the same configuration as the one we configured in
example listing 5-30:

Example
listing 5-31 – applicationContext.xml - <property-placeholder> element

Project – ch05-property-placeholder-element-example

Source location - src/main/resources/META-INF/spring

<beans
xmlns="http://www.springframework.org/schema/beans"

xmlns:context="http://www.springframework.org/schema/context"

xmlns:util="http://www.springframework.org/schema/util">

 …..

 <context:property-placeholder
ignore-unresolvable="false"

 location="classpath:database.properties,
classpath:webservice.properties"

 local-override="true"
order="1" properties-ref="localProps" />

 <util:properties
id="localProps">

 <prop
key="database.password">locally-set-password</prop>

 <prop
key="database.driverClass">locally-set-driverClass</prop>

 <prop
key="webservice.url">locally-set-webServiceUrl</prop>

 </util:properties>

</beans>

In the
above example listing, reference to Spring’s context schema is included so that
its elements are accessible. The above example listing shows that the use of <property-placeholder> element results in a less verbose configuration of PropertySourcesPlaceholderConfigurer. The ignore-unresolvable, location and local-override attributes correspond to ignoreUnresolvablePlaceholders, locations and localOverride
properties of PropertySourcesPlaceholderConfigurer. As the PropertySourcesPlaceholderConfigurer class implements Spring’s Ordered interface, the order
attribute’s value is used to set the order property of PropertySourcesPlaceholderConfigurer instance. The properties-ref attribute refers to a java.util.Properties object that
represents the local
properties. In the above example listing, the <properties> element of Spring’s util schema (refer section 3-8 of chapter 3) creates an instance of java.util.Properties object, which is referenced by the properties-ref attribute of <property-placeholder> element.

Let’s now
look at Spring’s PropertyOverrideConfigurer (a BeanFactoryPostProcessor) which allows you to specify values for bean properties in external
properties files.

PropertyOverrideConfigurer

PropertyOverrideConfigurer is similar
to PropertySourcesPlaceholderConfigurer in the sense that it allows you to specify a bean property value in
external properties file. When using PropertyOverrideConfigurer, bean
property value is specified in the following format in external properties
files:

<bean-name>.<bean-property-name>=<value>

here, <bean-name> is the name of the bean, <bean-property-name> is the name of the bean property, and <value> is the value that you want to assign to the bean property.

The
notable differences between PropertyOverrideConfigurer and PropertySourcesPlaceholderConfigurer classes are:

·
You can use PropertyOverrideConfigurer only for
externalizing values of bean properties, that is, you can’t use PropertyOverrideConfigurer to externalize values of constructor arguments.

·
PropertySourcesPlaceholderConfigurer doesn’t provide you with an option to specify default values for properties.
But, PropertyOverrideConfigurer allows you to specify default values for bean properties.

Let’s now
look at an example usage of PropertyOverrideConfigurer.

IMPORT chapter
5/ch05-propertyOverrideConfigurer-example
(This project shows a Spring application that uses
Spring’s PropertyOverrideConfigurer. To run the application, execute the main method of
the SampleApp class of this project.)

PropertyOverrideConfigurer example

The
following example listing shows bean definitions for DataSource and
WebServiceConfiguration classes whose properties we’ll set using PropertyOverrideConfigurer:

Example
listing 5-32 – applicationContext.xml - Bean
definitions for DataSource and
WebServiceConfiguration

Project – ch05-propertyOverrideConfigurer-example

Source location - src/main/resources/META-INF/spring

 <bean id="datasource"
class="sample.spring.chapter05.domain.DataSource">

 <property name="url" value="test
url value" />

 <property
name="username" value="test username value" />

 <property
name="password" value="test password value" />

 <property
name="driverClass" value="test driverClass value"
/>

 </bean>

 <bean
id="webServiceConfiguration"

 class="sample.spring.chapter05.domain.WebServiceConfiguration">

 <property
name="webServiceUrl" value="this webservice url needs to be
replaced" />

 </bean>

In the
above example listing, the <bean> element’s value attribute specifies default value of a bean property.

The
following example listing shows the bean definition for the PropertyOverrideConfigurer class that replaces the default values of bean properties (shown in
example listing 5-32) with values read from database.properties and webservice.properties files:

Example
listing 5-33 – applicationContext.xml - PropertyOverrideConfigurer configuration

Project – ch05-propertyOverrideConfigurer-example

Source location - src/main/resources/META-INF/spring

 <bean

class="org.springframework.beans.factory.config.PropertyOverrideConfigurer">

 <property
name="locations">

 <list>

<value>classpath:database.properties</value>

<value>classpath:webservice.properties</value>

 </list>

 </property>

 </bean>

In the
above example listing,
PropertyOverrideConfigurer’s locations property
specifies the properties files that contain values for bean properties.

NOTE
Instead of directly configuring PropertyOverrideConfigurer, you can use <property-override> element of Spring’s context schema to configure a PropertyOverrideConfigurer instance.

The
following example listing shows database.properties and webservice.properties files that contain values of bean properties:

Example listing 5-34 – Properties defined in database.properties and webservice.properties

Project – ch05-propertyOverrideConfigurer-example

Source location - src/main/resources/META-INF

database.properties file ------------------

datasource.url=some_url

datasource.username=some_username

datasource.password=some_password

webservice.properties
file ------------------

webServiceConfiguration.webServiceUrl=some_url

The
entries in the database.properties and webservice.properties files show that the property name follows the pattern: <bean-name>.<property-name>. When bean definitions are loaded by the Spring container, PropertyOverrideConfigurer replaces the default value of a bean property with the value read
for that bean property from the database.properties and webservice.properties files. For instance, the url property of datasource
bean is set to the value of datasource.url property defined in the database.properties file. Similarly, webServiceUrl
property of webServiceConfiguration bean is set to the value of webServiceConfiguration.webServiceUrl
property defined in the webservice.properties file.

If no
value is found for a bean property in the external properties files, the bean
property retains its default value. Example listing 5-32 shows that the driverClass
property of datasource bean has the default value ‘test driverClass value’. Example
listing 5-34 shows that there is no property named datasource.driverClass defined in the database.properties or webservice.properties file; therefore, the driverClass bean property retains its
default value.

The main method of
SampleApp class of ch05-propertyOverrideConfigurer-example project retrieves WebServiceConfiguration and DataSource beans from the ApplicationContext and prints their properties on the console. If you execute SampleApp’s main method,
you’ll see the following output on the console:

DataSource
[url=some_url, username=some_username, password=some_password, driverClass=test
driverClass value]

WebServiceConfiguration
[webServiceUrl=some_url]

The above
output shows that the default values of all bean properties, except that of driverClass,
are replaced by the property values specified in the external properties files.

As PropertyOverrideConfigurer and PropertySourcesPlaceholderConfigurer inherit from Spring’s PropertyResourceConfigurer class,
you’ll notice that both of these classes share many common configuration
options. For instance, you can set PropertyOverrideConfigurer’s localOverride
property to control whether the local properties get precedence over properties
read from external properties files, you can set PropertyOverrideConfigurer’s properties
property to define local properties, and so on.

5-5 Summary

In this
chapter, we saw how to add custom initialization and destruction logic to a
bean instance. We also looked at how you can modify newly created bean
instances using BeanPostProcessor implementations, and modify bean definitions using BeanFactoryPostProcessor implementations. Spring internally makes use of BeanPostProcessors and BeanFactoryPostProcessors to provide many framework features. In the next chapter, we’ll
look at Spring’s support for annotation-driven development.

Chapter 6- Annotation-driven development with
Spring

6-1
Introduction

In
previous chapters, we saw that the bean definitions contained in the
application context XML file are used as a blueprint by the Spring container to
create bean instances. A bean definition specifies information about bean
dependencies, initialization and destruction methods of a bean, lazy or eager
initialization strategy for the bean instance, bean scope, and so on. In this
section, we’ll look at annotations that you can use to specify the same
information in the bean class itself, thereby saving the effort to explicitly
configure a bean in the application context XML file. We’ll also touch upon Spring Expression
Language (SpEL) and how to validate objects using
Spring’s Validator interface and through JSR 303 annotations. We’ll end this
chapter with a quick look at how to programmatically define Spring beans using
Spring’s @Configuration and @Bean annotations.

Let’s
first begin with looking at Spring’s @Component annotation that indicates
that a particular class represents a Spring component.

6-2
Identifying Spring components with @Component

Spring’s @Component
annotation is a type-level annotation, which indicates that a class represents
a Spring component. It is recommended that you use more
specialized forms of @Component annotation to annotate controllers, services and data access
objects (DAOs) of your application. For instance, annotate controllers with @Controller,
services with @Service, and DAOs with @Repository annotation.

IMPORT chapter 6/ch06-bankapp-annotations (This project shows the MyBank
application that uses annotations for registering beans with the Spring
container and for autowiring dependencies. To run the application, execute the main method of the BankApp class
of this project.)

The
following example listing shows the MyBank’s FixedDepositServiceImpl class that
makes use of @Service annotation:

Example listing 6-1 – FixedDepositServiceImpl
class - @Service annotation usage

Project
– ch06-bankapp-annotations

Source location - src/main/java/sample/spring/chapter06/bankapp/service

package sample.spring.chapter06.bankapp.service;

import org.springframework.stereotype.Service;

@Service(value="FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService { }

As FixedDepositSerivceImpl class is annotated with @Service annotation, FixedDepositServiceImpl class represents a Spring component. @Service annotation accepts a value
attribute that specifies the name with which the component is registered as a
bean with the Spring container. For instance, FixedDepositServiceImpl class is
registered with Spring container as a bean with the name FixedDepositService. The value attribute serves the same purpose as the <bean>
element’s id attribute.

Like @Service annotation, @Component, @Repository and @Controller annotations specify the name of the component via value
attribute. You can specify the name of a Spring component without explicitly
specifying the value attribute. This means that @Service(value="FixedDepositService") is same
as @Service("FixedDepositService"). If you don’t specify a name for the component, Spring assumes name
of the component is same as the name of the component class. Only difference is
that the name of the component begins with a lowercase letter. You should specify a custom name for a component because
it’s particularly helpful when autowiring dependencies ‘by name’.

If you
enable classpath-scanning feature of Spring, bean classes annotated with @Component, @Controller, @Service or @Repository
annotations are automatically registered with the Spring container. You enable
classpath scanning feature of Spring by using the <component-scan> element of Spring’s context schema.

The
following example listing shows usage of <component-scan> element:

Example listing 6-2 – applicationContext.xml

Project
– ch06-bankapp-annotations

Source location -
src/main/resources/META-INF/spring

<beans
xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

xsi:schemaLocation=".....http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-4.0.xsd">

 <context:component-scan
base-package="sample.spring"/>

</beans>

In the
above example listing, reference to Spring’s context schema is included so that
its elements are accessible. The <component-scan> element’s base-package
attribute specifies comma-separated list of packages that should be searched
for Spring components. As the base-package attribute’s value is sample.spring, Spring components are
searched inside sample.spring package and its sub-packages. As the FixedDepositServiceImpl class shown
in example listing 6-1 is annotated with @Service annotation and is located in
package sample.spring.chapter06.bankapp.service, the <component-scan>
element in the above example listing
automatically registers FixedDepositServiceImpl class as a bean with the Spring container. This is equivalent to
the following bean definition for the FixedDepositServiceImpl class in the
application context XML file:

Example listing 6-3 – Bean definition for the FixedDepositServiceImpl class

<bean id="FixedDepositService"

class="sample.spring.chapter06.bankapp.service.FixedDepositServiceImpl"
/>

If you
want to filter the component classes that should be considered for automatic
registration with the Spring container, use the resource-pattern attribute of <component-scan> element. The default value of resource-pattern attribute is **/*.class,
which means all the component classes under the package(s) specified by the base-package
attribute will be considered for automatic registration. The <include-filter> and <exclude-filter> sub-elements of <component-scan> element provide a more concise way to specify component classes that should
be considered for automatic registration, and the classes that should be
ignored. For instance, the following example listing shows an example usage of <include-filter> and <exclude-filter> elements:

Example listing 6-4 – <include-filter> and <exclude-filter> elements

<beans>

 <context:component-scan
base-package="sample.example">

 <context:include-filter type="annotation"
expression="example.annotation.MyAnnotation"/>

 <context:exclude-filter
type="regex" expression=".*Details"/>

 </context:component-scan>

</beans>

The <exclude-filter> and <include-filter> elements define a type attribute that specifies the strategy used for filtering component
classes, and the expression attribute specifies the corresponding filter expression. In the
above example listing, the <include-filter> element specifies that the component classes that are annotated
with MyAnnotation type-level annotation are automatically registered with the Spring
container, and the <exclude-filter> element specifies that the component classes whose names end with Details are
ignored by the <component-scan> element.

The following
table describes the possible values that the type attributes of <include-filter> and <exclude-filter> elements can accept:

 	
 Value of type attribute

 	
 Description

 	
 annotation

 	
 If the type attribute’s value is annotation, the expression
 attribute specifies the fully-qualified class name of the annotation that a
 component class must be annotated with. For instance, if the expression
 attribute’s value is example.annotation.MyAnnotation, component classes that are annotated with MyAnnotation
 annotation are considered for inclusion (in case of <include-filter> element) or exclusion (in case of <exclude-filter> element).

 	
 assignable

 	
 If the type attribute’s value is assignable, the expression
 attribute specifies the fully-qualified name of a class or interface to which
 a component class must be assignable.

 	
 aspectj

 	
 If the type attribute’s value is aspectj, the expression
 attribute specifies an AspectJ expression that is used for filtering the
 component classes.

 	
 regex

 	
 If the type attribute’s value is regex, the expression
 attribute specifies a regular expression that is used for filtering component
 classes by their names.

 	
 custom

 	
 If the type attribute’s value is custom, an implementation of org.springframework.core.type.TypeFilter interface is specified by the expression attribute for filtering
 the component classes.

NOTE
In this section, we looked at an example usage of @Service annotation. @Component, @Controller and @Repository annotations are specified the same way as @Service annotation. Refer CustomerRegistrationDetails and CustomerRequestDetails classes of ch06-bankapp-annotations project to see usage of @Component annotation. Refer DAO classes contained in ch06-bankapp-annotations project to see usage of @Repository annotation.

As Spring
components are not defined in the application context XML file, you don’t have the
option to use <property> or <constructor-arg> element to specify their dependencies. For this reason, Spring
components make use of annotations like @Autowired, @Inject, and
so on, to specify their dependencies.

Let’s now
look at Spring’s @Autowired annotation.

6-3 @Autowired - autowiring
dependencies by type

@Autowired annotation is used to
autowire dependencies ‘by type’. Spring’s @Autowired annotation provides the
same functionality as the Spring’s autowiring feature that we discussed in
chapter 4, but @Autowired annotation offers a more cleaner and flexible approach to
autowiring bean dependencies. @Autowired annotation can be used at constructor-level, method-level and field-level.

The
following example listing shows the AccountStatementServiceImpl class
that uses the @Autowired annotation at the field-level:

Example listing 6-5 – AccountStatementServiceImpl
class - @Autowired annotation usage at the field-level

Project
– ch06-bankapp-annotations

Source location - src/main/java/sample/spring/chapter06/bankapp/service

package sample.spring.chapter06.bankapp.service;

import
org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

@Service(value="accountStatementService")

public class AccountStatementServiceImpl
implements AccountStatementService {

 @Autowired

 private AccountStatementDao
accountStatementDao;

 @Override

 public AccountStatement
getAccountStatement(Date from, Date to) {

 return
accountStatementDao.getAccountStatement(from, to);

 }

}

In the
above example listing, the accountStatementDao field (of type AccountStatementDao) is annotated with @Autowired annotation. When an instance of AccountStatementServiceImpl is
created, Spring’s AutowiredAnnotationBeanPostProcessor (a BeanPostProcessor implementation) is responsible for autowiring accountStatementDao field. The AutowiredAnnotationBeanPostProcessor
retrieves reference to an AccountStatementDao type bean from the Spring container and assigns it to the accountStatementDao field. It is important to note that the field annotated with @Autowired
annotation need not be public or have a corresponding public setter method.

NOTE Spring’s AutowiredAnnotationBeanPostProcessor performs autowiring of fields, methods and
constructors that are annotated with Spring’s @Autowired or JSR 330’s @Inject (explained in section 6-5) annotation.

The
following example listing shows the CustomerRegistrationServiceImpl class
that uses the @Autowired annotation at the method-level:

Example listing 6-6 – CustomerRegistrationServiceImpl
class - @Autowired annotation usage at the method-level

Project
– ch06-bankapp-annotations

Source location - src/main/java/sample/spring/chapter06/bankapp/service

package sample.spring.chapter06.bankapp.service;

@Service("customerRegistrationService")

@Scope(value =
ConfigurableBeanFactory.SCOPE_PROTOTYPE)

public class CustomerRegistrationServiceImpl
implements CustomerRegistrationService {

 private CustomerRegistrationDetails
customerRegistrationDetails;

 @Autowired

 public void
obtainCustomerRegistrationDetails(

 CustomerRegistrationDetails
customerRegistrationDetails) {

 this.customerRegistrationDetails
= customerRegistrationDetails;

 }

 @Override

 public void setAccountNumber(String
accountNumber) {

 customerRegistrationDetails.setAccountNumber(accountNumber);

 }

}

In the
above example listing, obtainCustomerRegistrationDetails method is annotated with @Autowired annotation. If a method is
annotated with @Autowired annotation, the arguments of the method are autowired. As obtainCustomerRegistrationDetails method is annotated with @Autowired annotation, its CustomerRegistrationDetails argument is autowired by type. It is important to
note that an @Autowired annotated method need not be public.

NOTE
A method annotated with @Autowired
annotation is invoked after the component instance is created, and the fields
annotated with @Autowired annotation
are injected with matching bean instances.

The
following example listing shows the CustomerRequestServiceImpl class that
defines a constructor annotated with @Autowired annotation:

Example listing 6-7 – CustomerRequestServiceImpl
class - @Autowired annotation usage at constructor-level

Project
– ch06-bankapp-annotations

Source location - src/main/java/sample/spring/chapter06/bankapp/service

package sample.spring.chapter06.bankapp.service;

@Service(value="customerRequestService")

public class CustomerRequestServiceImpl
implements CustomerRequestService {

 private CustomerRequestDetails
customerRequestDetails;

 private CustomerRequestDao
customerRequestDao;

 @Autowired

 public CustomerRequestServiceImpl(CustomerRequestDetails
customerRequestDetails,

 CustomerRequestDao
customerRequestDao) {

 this.customerRequestDetails =
customerRequestDetails;

 this.customerRequestDao =
customerRequestDao;

 }

}

In the
above example listing, the CustomerRequestServiceImpl’s constructor is annotated with @Autowired annotation. If a
constructor is annotated with @Autowired annotation, the arguments of the constructor are autowired. As CustomerRequestServiceImpl’s constructor is annotated with @Autowired annotation, its CustomerRequestDetails and
CustomerRequestDao arguments are autowired by type. It is important to note that an @Autowired annotated constructor need
not be public.

When using
the @Autowired annotation, exception is thrown if a bean matching the required
type is not found. For instance, in example listing 6-7, if a bean of type CustomerRequestDetails or CustomerRequestDao is not found to be registered with the Spring container, an
exception is thrown while creating the CustomerRequestServiceImpl instance. @Autowired’s required attribute specifies whether it is mandatory or optional to autowire
dependencies. If you set @Autowired’s required attribute value to false, autowiring of dependencies is considered optional. This means that if the required attribute’s value is set to false,
exception is not thrown if no bean matching the required type is found in the
Spring container. By default, value of required attribute is true;
dependencies must be satisfied by the Spring container.

If a
component class defines an @Autowired annotated constructor with required attribute’s value set to true, it can’t have another @Autowired annotated constructor. For instance, consider the following example
listing that defines 2 constructors annotated with the @Autowired
annotation:

Example listing 6-8 – A component
class that defines 2 @Autowired annotated constructors

@Service(value="customerRequestService")

public class CustomerRequestServiceImpl
implements CustomerRequestService {

 @Autowired(required=false)

 public
CustomerRequestServiceImpl(CustomerRequestDetails customerRequestDetails) {
..... }

 @Autowired

 public CustomerRequestServiceImpl(CustomerRequestDetails
customerRequestDetails,

 CustomerRequestDao
customerRequestDao) { }

}

As
autowiring of dependencies is required (@Autowired’s required
attribute is set to true) for one of the constructors and optional (@Autowired’s required
attribute is set to false) for the other in the above example listing, it results in an
exception thrown by Spring.

A
component class can define multiple @Autowired annotated constructors
with required attribute’s value set to false. In such a case, one of the
constructors will be invoked by Spring to create an instance of the component
class. The following example listing shows a component class that defines 2
constructors annotated with @Autowired
(required
= false), and a default constructor:

Example listing 6-9 – A component
class that defines multiple @Autowired annotated constructors with required attribute value set to false

@Service(value="customerRequestService")

public class CustomerRequestServiceImpl
implements CustomerRequestService {

 public CustomerRequestServiceImpl()
{

 }

 @Autowired(required=false)

 public
CustomerRequestServiceImpl(CustomerRequestDetails customerRequestDetails) {

 }

 @Autowired(required=false)

 public
CustomerRequestServiceImpl(CustomerRequestDetails customerRequestDetails,

 CustomerRequestDao
customerRequestDao) {

 }

}

In the
above example listing, both the @Autowired annotated constructors are candidates for autowiring by Spring to
create an instance of the CustomerRequestServiceImpl class. The constructor with the largest number of satisfied
dependencies is chosen. In case of CustomerRequestServiceImpl class, if
beans of types CustomerRequestDetails and CustomerRequestDao are registered with the Spring container, Spring invokes CustomerRequestServiceImpl(CustomerRequestDetails,
CustomerRequestDao) constructor. If a bean of type CustomerRequestDetails is registered with container but no bean of type CustomerRequestDao is registered, CustomerRequestServiceImpl(CustomerRequestDetails) constructor is invoked. In case none of the dependencies are found,
the default constructor of CustomerRequestServiceImpl class is invoked.

Let’s now
look at how you can use Spring’s @Qualifier annotation along with @Autowired
annotation to autowire dependencies by name.

6-4 @Qualifier – autowiring dependencies by name

You can
use Spring’s @Qualifier annotation along with @Autowired annotation to autowire
dependencies by
name. The @Qualifier annotation can be used at
field-level, method-parameter-level and constructor-argument-level.

The
following example listing shows the FixedDepositServiceImpl class that
uses @Qualifier annotation:

Example listing 6-10 – FixedDepositServiceImpl
class - @Qualifier annotation usage

Project
– ch06-bankapp-annotations

Source location - src/main/java/sample/spring/chapter06/bankapp/service

package sample.spring.chapter06.bankapp.service;

import org.springframework.beans.factory.annotation.Autowired;

import
org.springframework.beans.factory.annotation.Qualifier;

@Service(value="FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @Autowired

 @Qualifier(value="myFixedDepositDao")

 private FixedDepositDao myFixedDepositDao;

}

In the
above example listing, myFixedDepositDao field is annotated with @Autowired and @Qualifier
annotations. @Qualifier annotation’s value attribute specifies the name of the bean to be assigned to the myFixedDepositDao field.

Spring
first finds autowiring candidates ‘by type’ for the fields, constructors and
methods that are annotated with @Autowired annotation. Then, Spring uses the bean name specified by @Qualifier
annotation to locate a unique bean from the list of autowiring candidates. For example, in
example listing 6-10, Spring first finds beans of type FixedDepositDao for myFixedDepositDao field, and then locates the bean named myFixedDepositDao from the list of autowiring candidates. If a bean named myFixedDepositDao is found, Spring assigns it to the myFixedDepositDao field.

NOTE @Qualifier(value="myFixedDepositDao") is same as @Qualifier("myFixedDepositDao"); you don’t need to use the value attribute to specify the name of the bean to be
autowired.

The
following example listing shows usage of @Qualifier annotation at
method-parameter-level and constructor-argument-level:

Example listing 6-11 – @Qualifier usage at method-parameter-level and constructor-argument-level

public class Sample {

 @Autowired

 public Sample(@Qualifier("aBean")
ABean bean) { }

 @Autowired

 public void doSomething(@Qualifier("bBean")
BBean bean, CBean cBean) { }

}

In the
above example listing, @Qualifier annotation is specified for a constructor argument and a method
argument. When creating an instance of Sample class, Spring finds a bean of
type ABean with name aBean and passes it as an argument to the Sample class’s constructor. When
calling Sample’s doSomething method, Spring finds a bean of type BBean (whose name is bBean) and
another bean of type CBean, and passes both these beans as arguments to the doSomething
method. It is important to note that the BBean dependency is autowired by name, and CBean dependency is autowired by type.

Let’s now
look at JSR 330’s @Inject and @Named annotations that you can use instead of Spring’s @Autowired and
@Qualifier annotations.

6-5 JSR 330’s @Inject and
@Named annotations

JSR 330
(Dependency Injection for Java) standardizes dependency injection annotations
for the Java platform. JSR 330 defines @Inject and @Named
annotations that are similar to Spring’s @Autowired and @Qualifier
annotations, respectively. Spring provides support for @Inject and @Named
annotations.

IMPORT chapter 6/ch06-bankapp-jsr330 (This project shows the MyBank application that uses JSR 330’s @Inject and @Named
annotations for autowiring dependencies. To run the application, execute the main method of the BankApp class
of this project.)

The
following example listing shows the FixedDepositServiceImpl class that
makes use of JSR 330’s @Inject and @Named annotations:

Example listing 6-12 – FixedDepositServiceImpl
class

Project
– ch06-bankapp-jsr330

Source location - src/main/java/sample/spring/chapter06/bankapp/service

package sample.spring.chapter06.bankapp.service;

import javax.inject.Inject;

import javax.inject.Named;

@Named(value="FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @Inject

 @Named(value="myFixedDepositDao")

 private FixedDepositDao myFixedDepositDao;

}

If you
compare the FixedDepositServiceImpl class shown in the above example listing with the FixedDepositServiceImpl class in example listing 6-10, you’ll notice that JSR 330’s @Named
annotation has been used in place of @Service and @Qualifier
annotations, and JSR 330’s @Inject annotation has been used in place of @Autowired annotation.

@Autowired and @Inject
annotations have the same semantics; they are used for autowiring dependencies by type. Like @Autowired annotation, @Inject can be used at method-level, constructor-level and field-level.
Dependency injection of constructors is performed first, followed by fields,
and then methods. We saw earlier that @Autowired annotation’s required
attribute specifies whether it is mandatory or optional to autowire
dependencies. @Inject doesn’t have any equivalent of @Autowired annotation’s required
attribute.

If @Named
annotation is used at the type-level, it acts like Spring’s @Component
annotation. And, if @Named annotation is used at the method-parameter-level or
constructor-argument-level, it acts like Spring’s @Qualifier
annotation. If a class is annotated with @Named annotation, <component-scan> element of Spring’s context schema treats it like a component class annotated with @Component
annotation.

To use @Named and @Inject
annotations, you need to include JSR 330 JAR file in your project. The ch06-bankapp-jsr330 project includes JSR 330 JAR file through the following <dependency> element in the pom.xml file:

<dependency>

 <groupId>javax.inject</groupId>

<artifactId>javax.inject</artifactId>

 <version>1</version>

</dependency>

In chapter
5, we looked at JSR 250’s @PostConstruct and @PreDestroy annotations that are used to identify initialization and
destruction methods of a bean. Let’s now look at JSR 250’s @Resource
annotation that you can use for autowiring dependencies by name.

6-6 JSR 250’s @Resource
annotation

Spring
supports autowiring ‘by name’ of fields and methods via JSR 250’s @Resource
annotation. @Resource annotation’s name attribute specifies the name of the bean to be autowired. It is
important to note that you can’t use @Resource annotation for autowiring
constructor arguments.

The
following example listing shows how FixedDepositServiceImpl class from
example listing 6-12 can be rewritten using @Resource annotation:

Example listing 6-13 – @Resource annotation usage at field-level

import javax.annotation.Resource;

@Named(value="FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @Resource(name="myFixedDepositDao")

 private FixedDepositDao myFixedDepositDao;

}

In the
above example listing, @Resource
annotation has been used for autowiring myFixedDepositDao
field. As the value of name
attribute is myFixedDepositDao,
Spring locates a bean named myFixedDepositDao
in the Spring container and assigns it to myFixedDepositDao
field.

Instead of
using @Autowired and @Qualifier annotations, you should use @Resource annotation for autowiring
dependencies ‘by name’. As mentioned earlier, if you are using @Autowired-@Qualifier
combination to perform autowiring ‘by name’, Spring first finds beans based on
the type of the field (or the type of the method argument or constructor
argument) to be autowired, followed by narrowing down to a unique bean based on
the bean name specified by @Qualifier annotation. But, if you are using @Resource annotation, Spring uses
bean name specified by @Resource annotation to locate a unique bean. This means that when you use @Resource
annotation, type of the field (or setter method argument) to be autowired is not taken into consideration by Spring.

NOTE
As @Autowired, @Inject and @Resource
annotations are processed by BeanPostProcessors, you should not use these annotations in component
classes that implement BeanFactoryPostProcessor or BeanPostProcessor interface.

Let’s now
look at @Scope, @Lazy, @DependsOn and @Primary annotations.

6-7 @Scope, @Lazy, @DependsOn and
@Primary annotations

You
specify the scope (prototype or singleton) of a Spring component using Spring’s
@Scope annotation.
By default, Spring components are singleton-scoped. If you want a
Spring component to be prototype-scoped, you have to specify so via @Scope
annotation. @Scope annotation plays the same role as the <bean>
element’s scope attribute (refer section 2-5 of chapter 2 to know more about the scope
attribute).

The
following example listing shows the CustomerRequestDetails
class that uses @Scope
annotation:

Example listing 6-14 – @Scope annotation usage

Project
– ch06-bankapp-jsr330

Source location - src/main/java/sample/spring/chapter06/bankapp/domain

package sample.spring.chapter06.bankapp.domain;

import javax.inject.Named;

import org.springframework.beans.factory.config.ConfigurableBeanFactory;

import
org.springframework.context.annotation.Scope;

@Named(value="customerRequestDetails")

@Scope(value=ConfigurableBeanFactory.SCOPE_PROTOTYPE)

public class CustomerRequestDetails {
}

The @Scope
annotation accepts a value attribute that specifies the scope of the component. You can set value
attribute’s value to prototype or singleton to indicate whether the component is singleton-scoped or
prototype-scoped, or you can set value attribute’s value to ConfigurableBeanFactory’s SCOPE_SINGLETON (value is singleton) or SCOPE_PROTOTYPE (value is prototype) constants.

By
default, singleton-scoped Spring components are eagerly
initialized, that is, they are instantiated when the Spring container is
created. If you want a singleton-scoped component to be lazily created,
annotate the component class of a singleton-scoped component with @Lazy
annotation.

NOTE @Lazy annotation serves the same purpose as the <bean> element’s lazy-init attribute. Refer section 2-5 of chapter 2 to
know more about lazy-init attribute.

The
following example listing shows usage of @Lazy
annotation:

Example listing 6-15 – @Lazy
annotation usage

@Lazy(value=true)

@Component

public class Sample { }

@Lazy annotation’s value
attribute specifies whether the component is lazily or eagerly initialized. If
the value attribute’s value is true, it means that the component is
lazily initialized.

You
specify implicit bean dependencies using @DependsOn annotation. The following
example listing shows usage of @DependsOn annotation:

Example listing 6-16 – @DependsOn annotation
usage

@DependsOn(value = {"beanA",
"beanB"})

@Component

public class Sample { }

In the
above example listing, @DependsOn annotation on the Sample class instructs the Spring container to create beanA and beanB beans
before creating an instance of Sample class.

NOTE @DependsOn annotation serves the same purpose as the <bean> element’s depends-on attribute. Refer section 4-3 of chapter 4 to know more
about depends-on attribute.

If
multiple autowiring candidates are available for a dependency, @Primary
annotation designates a bean as a primary candidate for autowiring. The
following example listing shows usage of @Primary annotation:

Example listing 6-17 – @Primary
annotation usage

@Primary

@Component

public class Sample { }

NOTE @Primary annotation serves the same purpose as the <bean> element’s primary attribute. Refer section 4-6 of chapter 4 to know more
about primary attribute.

Let’s now
look at Spring’s @Value annotation that simplifies configuring component classes.

6-8
Simplifying component configuration using @Value annotation

In
previous chapters, we saw examples in which configuration information required
by beans was specified via value attribute of <property> and <constructor-arg> elements. As Spring components are not defined in the application
context XML file, Spring’s @Value annotation is used to serve the same purpose as the value
attribute of <property> and <constructor-arg> elements. You should note that the @Value annotation can be used at
field-level, method-level, method-parameter-level and constructor-argument-level.

IMPORT chapter 6/ch06-value-annotation (This project shows an application that uses Spring’s @Value
annotation to configure Spring components. To run the application, execute the main method of the SampleApp class
of this project.)

The
following example listing shows an example usage of @Value
annotation at field-level:

Example listing 6-18 – Sample class - @Value annotation usage

Project
– ch06-value-annotation

Source location - src/main/java/sample/spring/chapter06/beans

package sample.spring.chapter06.beans;

import
org.springframework.beans.factory.annotation.Value;

@Component(value="sample")

public class Sample {

 @Value("Some currency")

 private String currency;

}

In the
above example listing, currency field is annotated with @Value
annotation. The @Value annotation’s value attribute specifies the default value for the field. It is optional
to specify the value attribute; therefore, @Value(value="Some currency") is same as @Value("Some
currency").

You can
also use a Spring
Expression Language (SpEL) expression as the value of @Value annotation. SpEL is an expression language that you can use to query and manipulate objects at runtime. The
following example listing shows @Value annotations that make use of SpEL expressions:

Example listing 6-19 – Sample class - @Value annotation that uses SpEL expressions

Project
– ch06-value-annotation

Source location - src/main/java/sample/spring/chapter06/beans

package sample.spring.chapter06.beans;

import
org.springframework.beans.factory.annotation.Value;

@Component(value="sample")

public class Sample {

 @Value("#{configuration.environment}")

 private String environment;

 @Value("#{configuration.getCountry()}")

 private String country;

 @Value("#{configuration.state}")

 private String state;

}

The above
example listing shows that the @Value annotation specifies a value that has the syntax #{<spel-expression>}. The SpEL expression specified by @Value annotation is processed by a BeanPostProcessor. The SpEL expressions can make use of <beanName>.<field or
property or method> format to obtain its
value. For instance, #{configuration.environment} means obtain value of environment property of bean named configuration,
and #{configuration.getCountry()} means invoke getCountry method of bean named configuration.

The
following example listing shows the Java class of the configuration
bean referenced by SpEL expressions shown in example listing 6-19:

Example listing 6-20 – Configuration component class

Project
– ch06-value-annotation

Source location - src/main/java/sample/spring/chapter06/beans

package sample.spring.chapter06.beans;

import org.springframework.stereotype.Component;

@Component("configuration")

public class Configuration {

 public static String environment =
"DEV";

 public String getCountry() {

 return "Some country";

 }

 public String getState() {

 return "Some state";

 }

 public String[] splitName(String name) {

 return name.split(" ");

 }

 public String getCity() {

 return "Some city";

 }

}

The above
example listing shows that the Configuration class represents a Spring component that defines fields and
methods. If you compare example listing 6-19 with 6-20, you’ll notice that #{configuration.environment} expression refers to the static environment variable defined in the Configuration
class, #{configuration.getCountry()} expression refers to Configuration’s getCountry
method, and #{configuration.state} expression refers to Configuration’s getState
method.

The main method of
SampleApp class in ch06-value-annotation project retrieves an instance of Sample bean from the ApplicationContext and prints the value of various attributes of Sample bean
instance. If you execute SampleApp’s main method, you’ll see the following output:

Sample
[environment=DEV, currency=Some currency, country=Some country, state=Some
state, splitName=[FirstName, LastName], city=Some city]

The above
output shows:

·
#{configuration.environment} expression results in Sample’s environment
field value set to DEV, which is the value specified by public static field environment of
Configuration class.

·
#{configuration.getCountry()} expression results in Sample’s country field
value set to Some country, which is the value returned by invoking Configuration’s getCountry
method.

·
#{configuration.state} expression results in Sample’s state field
value set to Some state, which is the value returned by invoking Configuration’s getState
method.

The above
example shows that you can use SpEL to retrieve configuration information from
other beans.

NOTE
SpEL is a very powerful expression language, and it offers many more
capabilities than described in this book. It is recommended that you refer to Spring
reference documentation to know about SpEL.

The
following example listing shows usage of @Value annotation at method-level and
method-parameter-level:

Example listing 6-21 – Sample class - @Value annotation usage at method-level and method-parameter-level

Project
– ch06-value-annotation

Source location - src/main/java/sample/spring/chapter06/beans

package sample.spring.chapter06.beans;

import org.springframework.beans.factory.annotation.Autowired;

import
org.springframework.beans.factory.annotation.Value;

@Component(value="sample")

public class Sample {

 private String[] splitName;

 private String city;

 @Autowired

 public void splitName(@Value("#{configuration.splitName(FirstName
LastName')}")

String[] splitName) {

 this.splitName = splitName;

 }

 @Autowired

 @Value("#{configuration.getCity()}")

 public void city(String city) {

 this.city = city;

 }

}

The above
example listing shows that the methods that are annotated with @Autowired
annotation make use of @Value annotation at method-level and method-parameter-level. You should
note that the @Value annotation can be used at method-level and method-parameter-level only if the method is annotated with @Autowired or @Resource or @Inject
annotation. SpEL expression #{configuration.splitName('FirstName
LastName')} results in invocation of Configuration’s
splitName method with ‘FirstName
LastName’ as argument. This shows that SpEL
expressions can be used to invoke methods that accept arguments.

NOTE @Value annotation is processed by a BeanPostProcessor; therefore, you should not use @Value annotation in component classes that implement BeanFactoryPostProcessor or BeanPostProcessor interface.

Usage of
SpEL is not limited to @Value annotations, you can also use SpEL in bean definitions contained in
the application context XML file.

IMPORT chapter 6/ch06-spel-example (This project shows an application that uses SpEL expressions in
bean definitions. To run the
application, execute the main method of the SampleApp
class of this project.)

The
following example listing shows how SpEL is used in bean definitions:

Example listing 6-22 – applicationContext.xml – SpEL expressions in bean definitions

Project
– ch06-spel-example

Source location -
src/main/resources/META-INF/spring

 <beans >

 <bean id="sample"
class="sample.spring.chapter06.beans.Sample">

 <property
name="environment" value="#{configuration.environment}"
/>

 <property
name="currency" value="Some currency" />

 <property
name="country" value="#{configuration.getCountry()}" />

 <property
name="state" value="#{configuration.state}" />

 </bean>

 <bean id="configuration"
class="sample.spring.chapter06.beans.Configuration" />

</beans>

The above
example listing shows that the bean definition for the Sample class
makes use of SpEL expressions (that refer to Configuration bean) to set default
values for environment, currency, country and state properties.

Let’s now
look at how you can perform validation of objects in Spring applications using
Spring’s Validator interface.

6-9 Validating
objects using Spring’s Validator
interface

Spring’s Validator
interface is part of Spring Validation API that allows you to perform
validation of objects. You can use the Validator interface for performing
validation of objects in any of the application layers. For instance, you can
use the Validator interface to validate objects in the web layer as well as in the
persistence layer.

NOTE
An alternative to using the Validator
interface is to use JSR 303 annotations to specify constraints that apply on an
object. JSR 303 annotations are explained in the next section.

IMPORT chapter 6/ch06-validator-interface (This project shows the MyBank application that uses Spring’s Validator
interface to validate FixedDepositDetails object. To run the
application, execute the main method of the BankApp
class of this project.)

The FixedDepositDetails object of MyBank application represents details of a fixed deposit.
The following example listing shows the FixedDepositDetails class:

Example listing 6-23 – FixedDepositDetails class

Project
– ch06-validator-interface

Source location - src/main/java/sample/spring/chapter06/bankapp/domain

package sample.spring.chapter06.bankapp.domain;

public class FixedDepositDetails {

 private long id;

 private float depositAmount;

 private int tenure;

 private String email;

 public FixedDepositDetails(long
id, float depositAmount, int tenure,

 String email) {

 this.id = id;

 this.depositAmount =
depositAmount;

 this.tenure = tenure;

 this.email = email;

 }

 //-- getters and setters for instance
variables

 public float getDepositAmount() {

 return depositAmount;

 }

 …..

}

The above
example listing shows that the FixedDepositDetails class defines id, depositAmount, tenure and email instance variables. Let’s say that before the fixed deposit details
are saved in the system, we need to make sure that the fixed deposit amount
(represented by the depositAmount instance variable) is not 0.

To
validate the FixedDepositDetails object’s depositAmount property, we need to create an implementation of Spring’s Validator
interface. The following example listing shows a validator for objects of type FixedDepositDetails:

Example listing 6-24 – FixedDepositValidator
class – Spring’s Validator interface implementation

Project
– ch06-validator-interface

Source location - src/main/java/sample/spring/chapter06/bankapp/validator

package sample.spring.chapter06.bankapp.validator;

import
org.springframework.validation.Errors;

import org.springframework.validation.Validator;

public class FixedDepositValidator
implements Validator {

 @Override

 public boolean
supports(Class<?> clazz) {

 return FixedDepositDetails.class.isAssignableFrom(clazz);

 }

 @Override

 public void validate(Object target,
Errors errors) {

 FixedDepositDetails
fixedDepositDetails = (FixedDepositDetails) target;

 if (fixedDepositDetails.getDepositAmount()
== 0) {

 errors.reject("zeroDepositAmount");

 }

 }

}

The Validator
interface defines supports and validate methods. The supports
method checks if the supplied object instance
(represented by the clazz attribute) can be validated. If the supports method returns true, the validate
method is used to validate the object. In the above example listing, the FixedDepositValidator’s supports method checks if the supplied object instance is of type FixedDepositDetails. If the supports method returns true, the FixedDepositValidator’s validate method validates the object. The validate method accepts the object
instance to be validated, and an Errors instance. The Errors
instance’s reject method is used to store errors that occur during validation. You
can later inspect the Errors instance to know more about validation errors.

The
following example listing shows that the FixedDepositServiceImpl’s createFixedDeposit method uses the FixedDepositValidator (refer example listing 6-24) to validate FixedDepositDetails objects:

Example listing 6-25 – FixedDepositServiceImpl
class – Validating FixedDepositDetails object

Project
– ch06-validator-interface

Source location - src/main/java/sample/spring/chapter06/bankapp/service

package sample.spring.chapter06.bankapp.service;

import org.springframework.validation.BeanPropertyBindingResult;

import sample.spring.chapter06.bankapp.validator.FixedDepositValidator;

@Service(value="FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @Autowired

 @Qualifier(value="myFixedDepositDao")

 private FixedDepositDao
myFixedDepositDao;

 @Override

 public void
createFixedDeposit(FixedDepositDetails fixedDepositDetails) throws Exception {

 BeanPropertyBindingResult
bindingResult =

 new BeanPropertyBindingResult(fixedDepositDetails,
"Errors");

 FixedDepositValidator validator = new
FixedDepositValidator();

 validator.validate(fixedDepositDetails,
bindingResult);

 if(bindingResult.getErrorCount()
> 0) {

 logger.error("Errors were
found while validating FixedDepositDetails instance");

 } else {

 myFixedDepositDao.createFixedDeposit(fixedDepositDetails);

 logger.info("Created fixed
deposit");

 }

 }

}

FixedDepositServiceImpl’s createFixedDeposit method validates the FixedDepositDetails object
(represented by fixedDepositDetails argument) before it is saved into the data store by FixedDepositDao. The createFixedDeposit method shown in the above example listing performs the following
tasks:

·
creates an instance of FixedDepositValidator and Spring’s BeanPropertyBindingResult - a default implementation of Errors interface provided
out-of-the-box by Spring

·
invokes FixedDepositValidator’s validate
method, passing FixedDepositDetails object and the BeanPropertyBindingResult instance

·
invokes BeanPropertyBindingResult’s getErrorCount
method to check if any validation errors were reported. If no validation errors
are reported, FixedDepositDao’s createFixedDeposit method is called to save fixed deposit details in the data store.

The
following example listing shows BankApp’s main method that invokes FixedDepositServiceImpl’s createFixedDeposit method (refer example listing 6-25) to check if the validation is
performed correctly by FixedDepositValidator’s validate method:

Example listing 6-26 – BankApp
class

Project
– ch06-validator-interface

Source location - src/main/java/sample/spring/chapter06/bankapp

package sample.spring.chapter06.bankapp;

public class BankApp {

 public static void main(String
args[]) throws Exception {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

"classpath:META-INF/spring/applicationContext.xml");

 FixedDepositService FixedDepositService
= context.getBean(FixedDepositService.class);

 FixedDepositService.createFixedDeposit(new
FixedDepositDetails(1, 0,

 12,
"someemail@somedomain.com"));

 FixedDepositService.createFixedDeposit(new
FixedDepositDetails(1, 1000,

 12,
"someemail@somedomain.com"));

 }

}

First, FixedDepositService’s createFixedDeposit method is passed a FixedDepositDetails object with depositAmount value as 0, followed by a FixedDepositDetails object with depositAmount value as 1000.

If you
execute BankApp’s main method,
you’ll see the following output on the console:

Errors
were found while validating FixedDepositDetails instance

Created
fixed deposit

The output
‘Errors were found while validating FixedDepositDetails
instance’ shows that FixedDepositValidator reported errors when the FixedDepositDetails instance with 0 as the depositAmount
value was validated. The output ‘Created
fixed deposit’ shows that the no errors were
reported when the FixedDepositDetails instance with 1000 as the depositAmount value was validated.

NOTE
Spring’s Validator interface is typically used in Spring MVC based
web applications while binding information entered by a user in the HTML form
to the corresponding form-backing object.

Let’s now
look at how you can specify constraints on bean properties using JSR 303
annotations, and let Spring perform the validation.

6-10
Specifying constraints using JSR 303 annotations

JSR 303
(Bean Validation API) allows you to use annotations to specify constraints on
JavaBeans components. When using JSR 303 with Spring, you annotate bean
properties with JSR 303 annotations, and Spring takes care of validating the
bean and providing the validation result.

IMPORT chapter 6/ch06-jsr303-validation (This project shows the MyBank application that uses JSR 303
annotations. To run the
application, execute the main method of the BankApp
class of this project.)

The
following example listing shows the FixedDepositDetails class that makes
use of JSR 303 annotations:

Example listing 6-27 – FixedDepositDetails
class – JSR 303 annotations

Project
– ch06-jsr303-validation

Source location - src/main/java/sample/spring/chapter06/bankapp/domain

package sample.spring.chapter06.bankapp.domain;

import javax.validation.constraints.*;

import
org.hibernate.validator.constraints.NotBlank;

public class FixedDepositDetails {

 @NotNull

 private long id;

 @Min(1000)

 @Max(500000)

 private float depositAmount;

 @Min(6)

 private int tenure;

 @NotBlank

 @Size(min=5, max=100)

 private String email;

 public FixedDepositDetails(long id, float
depositAmount, int tenure, String email) {

 this.id = id;

 this.depositAmount = depositAmount;

 this.tenure = tenure;

 this.email = email;

 }

}

@NotNull, @Min, @Max, @NotBlank and @Size are some
of the annotations defined by JSR 303 Bean Validation API. The above example
listing shows that by using JSR 303 annotations FixedDepositDetails class clearly
specifies the constraints that apply on its fields. On the other hand, if you
are using Spring Validation API to validate an object, constraint information
is contained in the Validator implementation (refer example listing 6-24).

The following table describes the constraints enforced by JSR 303
annotations on the FixedDepositDetails object shown in example listing 6-27:

 	
 JSR
 303 annotation

 	
 Constraint
 description

 	
 @NotNull

 	
 The annotated field must not be null.

 For instance, FixedDepositDetails’ id field
 must not be null.

 	
 @Min

 	
 The annotated field’s value must be greater than or equal to the
 specified minimum value.

 For instance, @Min(1000) annotation on depositAmount field of FixedDepositDetails object means that depositAmount’s value must be greater than or equal to 1000.

 	
 @Max

 	
 The annotated field’s value must be less than or equal to the
 specified value.

 For instance, @Max(500000) annotation on depositAmount field of FixedDepositDetails object means that the depositAmount’s value must be less
 than or equal to 500000.

 	
 @NotBlank

 	
 The annotated field’s value must not be null or empty.

 For instance, FixedDepositDetails’ email field
 must not be empty or null.

 	
 @Size

 	
 The annotated field’s size must be between the specified min and max
 attributes.

 For instance, @Size(min=5,
 max=100) annotation on email field
 of FixedDepositDetails object means that the size of the email field must be greater than or
 equal to 5 and less than or equal to 100.

NOTE To use JSR 303 annotations, ch06-jsr303-validation project specifies dependency on JSR 303 API JAR
file (validation-api-1.0.0.GA) and Hibernate Validator framework (hibernate-validation-4.3.0.Final). The Hibernate Validator framework provides the
reference implementation for JSR 303.

If you
look at the import statements in example listing 6-27, you’ll notice that the @NotBlank
annotation is defined by Hibernate Validator framework, and not by JSR 303.
Hibernate Validator framework provides additional annotations that you can use
along with JSR 303 annotations.

Now, that
we have specified JSR 303 constraints on FixedDepositDetails class, let’s look
at how to validate FixedDepositDetails object using Spring.

JSR 303
support in Spring

Spring
supports validating objects that make use of JSR 303 constraints. Spring’s LocalValidatorFactoryBean class is responsible for detecting the presence of a JSR 303
provider (like Hibernate Validator) in the application’s classpath and
initializing it. It is important to note that the LocalValidatorFactoryBean implements JSR 303’s Validator and ValidatorFactory interfaces, and also Spring’s Validator interface.

The
following example listing shows the configuration of LocalValidatorFactoryBean class in the application context XML file:

Example listing 6-28 – applicationContext.xml – Spring’s LocalValidatorFactoryBean configuration

Project
– ch06-jsr303-validation

Source location - src/main/resources/META-INF/spring

<bean id="validator"

class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean"
/>

As you can
see, LocalValidatorFactoryBean is configured like any other Spring bean. Now that we have
configured LocalValidatorFactoryBean, let’s see how it is used to perform validation.

The
following example listing shows the FixedDepositServiceImpl class which
requires that the FixedDepositDetails object is validated before fixed deposit details are saved in the
data store:

Example listing 6-29 – FixedDepositServiceImpl
class – validating FixedDepositDetails object

Project
– ch06-jsr303-validation

Source location - src/main/java/sample/spring/chapter06/bankapp/service

package sample.spring.chapter06.bankapp.service;

import
org.springframework.validation.BeanPropertyBindingResult;

import
org.springframework.validation.Validator;

.....

@Service(value="FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @Autowired

 private Validator validator;

 @Autowired

 @Qualifier(value="myFixedDepositDao")

 private FixedDepositDao
myFixedDepositDao;

 @Override

 public void createFixedDeposit(FixedDepositDetails
fixedDepositDetails) throws Exception {

 BeanPropertyBindingResult
bindingResult =

 new
BeanPropertyBindingResult(fixedDepositDetails, "Errors");

 validator.validate(fixedDepositDetails,
bindingResult);

 if(bindingResult.getErrorCount()
> 0) {

 logger.error("Errors were
found while validating FixedDepositDetails instance");

 } else {

 myFixedDepositDao.createFixedDeposit(fixedDepositDetails);

 logger.info("Created fixed
deposit");

 }

 }

}

The above
example listing shows that Spring’s Validator implementation is
referenced by the validator field. As LocalValidatorFactoryBean implements Spring’s Validator
interface, LocalValidatorFactoryBean instance is
assigned to the validator field. FixedDepositServiceImpl’s createFixedDeposit method invokes Validator’s validate method to perform validation of FixedDepositDetails object.

One of the
interesting things to notice in example listing 6-29 is that we are not dealing with JSR 303 API to perform validation of FixedDepositDetails object. Instead, we have used Spring Validation API to perform
validation. This is possible because LocalValidatorFactoryBean implements validate
method of Spring’s Validator interface to use JSR 303 API to perform validation of objects,
shielding developers from JSR 303-specific API details.

As LocalValidatorFactoryBean implements JSR 303’s Validator and ValidatorFactory interfaces, you have the option to use JSR 303 API to perform
validation of FixedDepositDetails object. The following example listing shows an alternative
implementation of FixedDepositServiceImpl class that makes use of JSR 303’s Validator to perform validation:

Example listing 6-30 – FixedDepositServiceImplJsr303
class - validating FixedDepositDetails object

Project
– ch06-jsr303-validation

Source location - src/main/java/sample/spring/chapter06/bankapp/service

package sample.spring.chapter06.bankapp.service;

import
javax.validation.ConstraintViolation;

import javax.validation.Validator;

@Service(value = "FixedDepositServiceJsr303")

public class FixedDepositServiceJsr303Impl
implements FixedDepositService {

 @Autowired

 private Validator validator;

 @Autowired

 @Qualifier(value = "myFixedDepositDao")

 private FixedDepositDao myFixedDepositDao;

 @Override

 public void createFixedDeposit(FixedDepositDetails
fixedDepositDetails) throws Exception {

 Set<ConstraintViolation<FixedDepositDetails>>
violations =

 validator.validate(fixedDepositDetails);

 Iterator<ConstraintViolation<FixedDepositDetails>>
itr = violations.iterator();

 if (itr.hasNext()) {

 logger.error("Errors were
found while validating FixedDepositDetails instance");

 } else {

 myFixedDepositDao.createFixedDeposit(fixedDepositDetails);

 logger.info("Created fixed
deposit");

 }

 }

}

The above
example listing shows that JSR 303’s Validator implementation is
referenced by the validator field. As LocalValidatorFactoryBean implements JSR 303’s Validator interface, LocalValidatorFactoryBean instance is assigned to the validator field. The createFixedDeposit method validates FixedDepositDetails object by calling Validator’s validate method. The validate method returns a java.util.Set object that contains the constraint violations reported by JSR 303
provider. You can check the java.util.Set object returned by the validate method to know if any
constraint violations were reported. For instance, in the above example
listing, the createFixedDeposit method calls FixedDepositDao’s createFixedDeposit method only if java.util.Set doesn’t contain any constraint violations.

In this
section, we saw how to use Spring’s support for JSR 303 to perform validation
of objects. We only looked at constraints, like @NotNull, @Size, and so
on, that are provided out-of-the-box by JSR 303. It is important to note that
JSR 303 allows you to create custom constraints and use them in your
application. For instance, you can create a @MyConstraint custom constraint and a
corresponding validator to enforce that constraint on objects.

Let’s now
look at annotations that you can use to programmatically configure Spring
beans.

6-11
Programmatically configuring Spring beans using @Configuration and @Bean annotations

You
can use @Configuration
and @Bean
annotations to programmatically configure Spring beans. If you annotate a class
with @Configuration
annotation, it indicates that the class contains @Bean annotated
methods that return bean instances meant to be registered with the Spring
container.

NOTE To use @Configuration annotated classes for defining beans, CGLIB library is
required because Spring extends @Configuration annotated classes to add behavior to the @Bean annotated methods. Starting with Spring 3.2, the CGLIB classes are packaged
within the spring-core JAR file itself; therefore, you don’t need to
explicitly specify that your project is dependent on CGLIB JAR file.

IMPORT chapter 6/ch06-bankapp-configuration (This project shows the MyBank application that uses @Configuration
and @Bean annotations to programmatically configure beans. To run the application, execute the main method of
the BankApp class of this project.)

The
following example listing shows the BankAppConfiguration
class that is annotated with @Configuration
annotation:

Example listing 6-31 – BankAppConfiguration class - @Configuration and @Bean
annotations

Project
– ch06-bankapp-configuration

Source location
-
src/main/java/sample/spring/chapter06/bankapp

package sample.spring.chapter06.bankapp;

import
org.springframework.context.annotation.Bean;

import
org.springframework.context.annotation.Configuration;

import
org.springframework.context.annotation.Scope;

.....

@Configuration

public class BankAppConfiguration {

 @Bean(name =
"customerRegistrationService")

 @Scope(value =
ConfigurableBeanFactory.SCOPE_PROTOTYPE)

 public CustomerRegistrationService
customerRegistrationService() {

 return new
CustomerRegistrationServiceImpl();

 }

}

BankAppConfiguration
class defines @Bean annotated methods that return bean
instances. @Bean’s name
attribute specifies the name with which the returned bean instance is
registered with the Spring container. @Scope
annotation specifies the scope (singleton or prototype) of the returned bean
instance.

NOTE @Scope annotation is also used at the type-level to specify the
scope of a Spring component. Refer example listing 6-14 that shows usage of @Scope annotation at type-level.

In example
listing 6-31, the customerRegistrationService method returns an instance of CustomerRegistrationService bean that is registered with the Spring container as a
prototype-scoped bean named customerRegistrationService. The customerRegistrationService method
has the same effect as the following bean definition in the application context
XML file:

<bean
id="customerRegistrationService" scope="prototype”

 class="sample.spring.chapter06.bankapp.service.CustomerRegistrationServiceImpl"
/>

The following table describes the attributes of @Bean
annotation that you can use to configure the bean instance:

 	
 Value
 of type attribute

 	
 Description

 	
 Autowire

 	
 Same as <bean> element’s autowire attribute (refer section 4-6 of chapter 4 to know more about autowire
 attribute). If the bean returned by the @Bean annotated method is dependent
 on other beans, you can use autowire attribute to instruct Spring to perform autowiring of
 dependencies by name or type.

 	
 initMethod

 	
 Same as <bean> element’s init-method attribute (refer section 5-2 of chapter 5 to know more about init-method
 attribute)

 	
 destroyMethod

 	
 Same as
 <bean> element’s destroy-method attribute (refer section 5-2 of chapter 5 to know more about destroy-method attribute)

It is
important to note that @Bean annotated methods may also be annotated with @Lazy, @DependsOn, @Primary and @Scope
annotations. These annotations apply to the object instance returned by the @Bean annotated
method. For instance, @DependsOn annotation specifies the implicit dependencies of the object
instance returned by the @Bean annotated method. Also, if the bean instance returned by @Bean
annotated method implements lifecycle interfaces (like InitializingBean and DisposableBean), and Spring’s *Aware interfaces (like ApplicationContextAware, BeanNameAware, and so on), it’ll receive callbacks from the Spring container.

In the
examples that we have seen so far, we created an instance of ClassPathXmlApplicationContext class (an implementation of ApplicationContext interface) to
represent the Spring container. If you are using an @Configuration
annotated class as the source of beans, you need to create an instance of AnnotationConfigApplicationContext class (another implementation of ApplicationContext interface) to
represent the Spring container.

The
following example listing shows the BankApp class that creates an
instance of AnnotationConfigApplicationContext class and retrieves beans from the newly created AnnotationConfigApplicationContext instance:

Example listing 6-32 – BankApp class - AnnotationConfigApplicationContext usage

Project
– ch06-bankapp-configuration

Source location - src/main/java/sample/spring/chapter06/bankapp

package sample.spring.chapter06.bankapp;

import
org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class BankApp {

 public static void main(String args[])
throws Exception {

 AnnotationConfigApplicationContext
context =

 new AnnotationConfigApplicationContext(BankAppConfiguration.class);

 FixedDepositService
FixedDepositService = context.getBean(FixedDepositService.class);

 FixedDepositService.createFixedDeposit(new
FixedDepositDetails(1, 1000,

 12,
"someemail@somedomain.com"));

 }

}

In the
above example listing, the BankAppConfiguration class is passed as an argument to the AnnotationConfigApplicationContext’s constructor. As AnnotationConfigApplicationContext class implements ApplicationContext interface, you can access registered beans in the same way as in
case of ClassPathXmlApplicationContext.

You should
note that @Bean annotated methods can also be defined in @Component and
JSR 330’s @Named annotated classes. In case you have defined beans in multiple @Configuration,
@Component and @Named annotated classes, pass all these classes to the AnnotationConfigApplicationContext’s constructor.

The
following example listing shows @Bean annotated methods of BankAppConfiguration class that
return a BeanFactoryPostProcessor and a BeanPostProcessor implementation:

Example listing 6-33 – BankAppConfiguration class – defining BeanFactoryPostProcessor and BeanPostProcessor beans

Project
– ch06-bankapp-configuration

Source location - src/main/java/sample/spring/chapter06/bankapp

package sample.spring.chapter06.bankapp;

import
org.springframework.context.annotation.Bean;

@Configuration

public class BankAppConfiguration {

 @Bean

 public ExampleBeanPostProcessor
exampleBeanPostProcessor() {

 return new ExampleBeanPostProcessor();

 }

 @Bean

 public static
BeanNamePrinterBeanFactoryPostProcessor applicationConfigurer() {

 return new BeanNamePrinterBeanFactoryPostProcessor();

 }

}

In the
above example listing, ExampleBeanPostProcessor instance represents a BeanPostProcessor that prints a
message on the console before and after a newly created bean instance is initialized, and BeanNamePrinterBeanFactoryPostProcessor instance represents a BeanFactoryPostProcessor
implementation that prints names of all the beans registered with the Spring
container.

If you go
to ch06-bankapp-configuration project and execute BankApp’s main method, you’ll notice that the BeanNamePrinterBeanFactoryPostProcessor is invoked before any bean defined in @Configuration
annotated class is created by the Spring container, and the ExampleBeanPostProcessor is invoked each time a new bean instance is created by the Spring
container. This shows that whether you configure beans declaratively (via
application context XML file) or programmatically (via @Configuration
annotated class), beans that implement callback interfaces (like ApplicationContextAware, BeanNameAware, InitializingBean, DisposableBean, BeanFactoryPostProcessor, and so on) receive callback from the Spring container.

6-12 Summary

This
chapter looked at annotations that you can use to simplify developing Spring
applications. We looked at how to designate a bean class as a Spring component
using Spring’s @Component, @Service, @Repository and
@Controller annotations, perform classpath
scanning to automatically register Spring components with container, validate
objects using Spring Validation API and JSR 303’s annotations, perform
dependency injection using Spring’s @Autowired, JSR 330’s @Inject and
JSR 250’s @Resource annotations, and use @Configuration and @Bean
annotations to configure beans programmatically. The next chapter shows how
Spring simplifies interacting with databases.

Chapter 7 - Database interaction
using Spring

7-1
Introduction

Spring
simplifies interaction with databases by providing a layer of abstraction on
top of JDBC. Spring also simplifies using ORM (Object Relational Mapping)
frameworks, like Hibernate (http://www.hibernate.org/)
and MyBatis (http://www.mybatis.org),
for database interaction. In this chapter, we’ll look at examples that
demonstrate how Spring simplifies developing applications that interact with
databases.

NOTE
The examples described in this chapter make use of Hibernate 4. If you are
using Hibernate 3, the changes that you’ll need to make to the configuration
are specified at relevant places.

We’ll
begin this chapter by looking at a sample application that uses Spring’s JDBC
abstraction to interact with MySQL database. After that, we we’ll develop the
same application using Spring’s support for Hibernate framework. We’ll wrap
this chapter by looking at Spring’s support for programmatic and declarative
transaction management.

Let’s
first look at the MyBank application’s requirements that we’ll be developing in
this chapter.

7-2 MyBank
application’s requirements

MyBank
application is an internet banking application that allows bank customers to
check bank account details, generate bank statement, create fixed deposits,
request cheque book, and so on. The following figure shows the BANK_ACCOUNT_DETAILS and FIXED_DEPOSIT_DETAILS tables in which
MyBank application’s data is stored:

Figure 7-1 Database tables used
by the MyBank application

BANK_ACCOUNT_DETAILS table contains
information about bank accounts, and FIXED_DEPOSIT_DETAILS table contains
information about fixed deposits. The above figure shows that there is
many-to-one relationship between FIXED_DEPOSIT_DETAILS and BANK_ACCOUNT_DETAILS tables. When a bank customer opens a new fixed deposit, the fixed
deposit amount is deducted from the BANK_ACCOUNT_DETAILS table’s BALANCE_AMOUNT
column, and the fixed deposit details are saved in the FIXED_DEPOSIT_DETAILS table.

The
columns of BANK_ACCOUNT_DETAILS table are:

·
ACCOUNT_ID – account identifier that uniquely identifies a customer’s bank
account.

·
BALANCE_AMOUNT – holds the current balance in the bank account. When a customer
requests for opening a fixed deposit, the fixed deposit amount is deducted from
this column.

·
LAST_TRANSACTION_TS – specifies the date/time when the last transaction was performed
on this account.

The
columns of FIXED_DEPOSIT_DETAILS table are:

·
FIXED_DEPOSIT_ID – fixed deposit identifier that uniquely identifies a fixed
deposit. When a customer opens a fixed deposit, a unique fixed deposit
identifier is generated by the MyBank for future reference by the customer. The
value of FIXED_DEPOSIT_ID column is auto-generated by MySQL database.

·
ACCOUNT_ID – foreign key that identifies the bank account with which the fixed
deposit is associated. Every quarter, interest generated by the fixed deposit
is credited into the bank account identified by this column.

·
FD_CREATION_DATE – the date on which the fixed deposit was created

·
AMOUNT – fixed deposit amount

·
TENURE – fixed deposit tenure (in months). Fixed deposit tenure must be
greater than or equal to 12 months and less than or equal to 60 months.

·
ACTIVE – indicates whether the fixed deposit is currently active or not.
An active fixed deposit generates interest on the fixed deposit amount.

Let’s now
look at how we can create the MyBank application using Spring’s JDBC module.

7-3
Developing the MyBank application using Spring’s JDBC module

Spring’s
JDBC module simplifies interaction with data sources by taking care of lower
level details of opening and closing connections, managing transactions,
processing exceptions, and so on. In this section, we’ll develop the MyBank
application (as described in the previous section) using Spring’s JDBC module.
For the sake of simplicity, we’ll develop only the services and DAOs that form
part of the MyBank application.

IMPORT chapter 7/ch07-bankapp-jdbc (This project shows the MyBank
application that uses Spring’s JDBC module to interact with the database. To
run the application, execute the main method of the BankApp class
of this project. Before executing BankApp’s main method,
install MySQL database and execute the spring_bank_app_db.sql SQL script
contained in the sql folder of ch07-bankapp-jdbc project. Executing spring_bank_app_db.sql script creates SPRING_BANK_APP_DB database and adds BANK_ACCOUNT_DETAILS and FIXED_DEPOSIT_DETAILS tables to the SPRING_BANK_APP_DB database. Also, modify the src/main/resources/META-INF/spring/database.properties file to point to your MySQL installation.)

In MyBank
application, you first need to configure a javax.sql.DataSource object that
identifies the data source with which the MyBank application interacts,
followed by implementing DAOs that use Spring’s JDBC module classes to interact
with the data source. Let’s look at each of these steps in detail.

Configuring a
data source

If you are
using Spring to develop a standalone application, you can configure the data
source in the application context XML file. If you are developing an enterprise
application, you can define a data source that is bound to the application
server’s JNDI, and retrieve the JNDI-bound data source in the application
context XML file for use by the application. In case of ch07-bankapp-jdbc project, the data source is configured in
the application context XML file.

The
following example listing shows how MyBank application’s data source is
configured in the application context XML file:

Example listing 7-1 – applicationContext.xml – data source configuration

Project
– ch07-bankapp-jdbc

Source location -
src/main/resources/META-INF/spring

 <context:property-placeholder
location="classpath*:META-INF/spring/database.properties" />

 <bean id="dataSource"

 class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close" >

 <property
name="driverClassName" value="${database.driverClassName}"
/>

 <property name="url"
value="${database.url}" />

 <property
name="username" value="${database.username}" />

 <property
name="password" value="${database.password}" />

 </bean>

In the
above example listing, the <property-placeholder> element (refer section 5-4 of chapter 5 for more details) of
Spring’s context schema loads properties from the META-INF/spring/database.properties
file and makes them available to bean definitions in the application context
XML file. The dataSource bean represents a javax.sql.DataSource object that acts as a factory for creating connections to the data
source. BasicDataSource class is an implementation of javax.sql.DataSource interface that
supports connection pooling feature. BasicDataSource class is part of
Apache Commons DBCP project (http://commons.apache.org/dbcp/)
and supports database connection pooling feature. The values for driverClassName, url, username and password properties of BasicDataSource class comes from the properties defined in the database.properties file. The close method of BasicDataSource class closes all idle connections in the pool. As the bean
definition for the BasicDataSource class specifies value of destroy-method attribute as close, all
idle connections in the pool are closed when the dataSource bean instance is destroyed
by the Spring container.

Configuring a data
source in Java EE environments

If you are
developing an enterprise application that is deployed in an application server,
you can use Spring’s jee schema’s <jndi-lookup> element to make the JNDI-bound data source available as a Spring
bean in the ApplicationContext:

<jee:jndi-lookup jndi-name="java:comp/env/jdbc/bankAppDb"
id="dataSource" />

here, jndi-name
attribute specifies the JNDI name with which the javax.sql.DataSource object is bound
to the JNDI, and id attribute specifies the name with which the javax.sql.DataSource object is registered as a bean in the ApplicationContext.

Let’s now
look at some of the Spring’s JDBC module classes that you can use in your DAOs
to interact with the database.

Creating DAOs
that use Spring’s JDBC module classes

Spring’s
JDBC module defines multiple classes that simplify database interaction. We’ll
first look at the JdbcTemplate class that is at the heart of Spring’s JDBC module. The other
classes that we’ll discuss in this section are NamedParameterJdbcTemplate and SimpleJdbcInsert. To learn about other Spring’s JDBC module classes, refer to
Spring’s reference documentation.

JdbcTemplate

JdbcTemplate class takes care of
managing Connection,
Statement and ResultSet objects, catching
JDBC exceptions and translating them into easily understandable exceptions
(like IncorrectResultSetColumnCountException
and CannotGetJdbcConnectionException),
performing batch operations, and so on. An application developer only needs to
provide SQL to the JdbcTemplate
class, and extract results after the SQL is executed.

As JdbcTemplate
acts as a wrapper around javax.sql.DataSource
object, you don’t need to directly deal with a javax.sql.DataSource
object. A JdbcTemplate
instance is typically initialized with reference to the javax.sql.DataSource object
from which it needs to obtain connections, as shown in the following example
listing:

Example listing 7-2 – applicationContext.xml – JdbcTemplate configuration

Project
– ch07-bankapp-jdbc

Source location -
src/main/resources/META-INF/spring

 <bean id="jdbcTemplate"
class="org.springframework.jdbc.core.JdbcTemplate">

 <property
name="dataSource" ref="dataSource" />

 </bean>

 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource".....>

 </bean>

The above
example listing shows that the JdbcTemplate class defines a dataSource property that refers to a javax.sql.DataSource object.

If your
application uses a JNDI-bound data source, use the <jndi-lookup> element of jee schema to register the JNDI-bound data source as a bean with the
Spring container. Now, the the JdbcTemplate class can refer to the javax.sql.DataSource bean registered
by the <jndi-lookup> element, as shown in the following example listing:

Example listing 7-3 – JdbcTemplate configuration for JNDI-bound data source

<beans

 xmlns:jee="http://www.springframework.org/schema/jee"

 xsi:schemaLocation=".....

http://www.springframework.org/schema/jee

http://www.springframework.org/schema/jee/spring-jee-4.0.xsd">

 <bean id="jdbcTemplate"
class="org.springframework.jdbc.core.JdbcTemplate">

 <property
name="dataSource" ref="dataSource" />

 </bean>

 <jee:jndi-lookup
jndi-name="java:comp/env/jdbc/bankAppDb" id="dataSource"
/>

</beans>

In the
above example listing, reference to Spring’s jee schema is included in the
application context XML file. The <jndi-lookup> element retrieves
javax.sql.DataSource object from JNDI and exposes it as a bean named dataSource,
which is referenced by the JdbcTemplate class.

JdbcTemplate instance is thread-safe,
which means multiple DAOs of your application can share the same instance of JdbcTemplate
class to interact with the database. The following example listing shows FixedDepositDaoImpl’s createFixedDeposit method that makes use of JdbcTemplate to save fixed deposit
details in the database:

Example listing 7-4 – FixedDepositDaoImpl class – saving data using JdbcTemplate

Project
– ch07-bankapp-jdbc

Source location -
src/main/java/sample/spring/chapter07/bankapp/dao

package sample.spring.chapter07.bankapp.dao;

import java.sql.*;

import org.springframework.jdbc.core.JdbcTemplate;

import
org.springframework.jdbc.core.PreparedStatementCreator;

import
org.springframework.jdbc.support.GeneratedKeyHolder;

import
org.springframework.jdbc.support.KeyHolder;

import
org.springframework.stereotype.Repository;

@Repository(value =
"FixedDepositDao")

public class FixedDepositDaoImpl implements FixedDepositDao
{

 @Autowired

 private JdbcTemplate jdbcTemplate;

 public int createFixedDeposit(final FixedDepositDetails
fixedDepositDetails) {

 final String sql =

 "insert into
fixed_deposit_details(account_id, fixedDeposit_creation_date, amount,

 tenure, active) values(?, ?, ?,
?, ?)";

 KeyHolder keyHolder = new
GeneratedKeyHolder();

 jdbcTemplate.update(new
PreparedStatementCreator() {

 @Override

 public PreparedStatement
createPreparedStatement(Connection con)

 throws SQLException
{

 PreparedStatement ps =
con.prepareStatement(sql, new String[] {

 "fixed_deposit_id"
});

 ps.setInt(1, fixedDepositDetails.getBankAccountId());

 ps.setDate(2,

 new java.sql.Date(fixedDepositDetails.getFixedDepositCreationDate().getTime()));

 return ps;

 }

 }, keyHolder);

 return
keyHolder.getKey().intValue();

 }

}

In the
above example listing, the FixedDepositDaoImpl class is annotated with Spring’s @Repository annotation because the FixedDepositDaoImpl class represents a DAO class. JdbcTemplate instance that we
configured in the application context XML file (refer example listing 7-2) is
autowired into the FixedDepositDaoImpl class. JdbcTemplate’s update method accepts an instance of PreparedStatementCreator and an
instance of KeyHolder. PreparedStatementCreator is used to perform insert, update or delete operation on the
database. Spring’s KeyHolder interface represents a holder for the keys that are auto-generated
when insert SQL statements are executed. GeneratedKeyHolder class is the
default implementation of KeyHolder interface.

Once the INSERT SQL
statement is successfully executed, the auto-generated keys are added to the GeneratedKeyHolder instance. You can extract the auto-generated keys from the GeneratedKeyHolder by calling the getKey method. In example listing 7-4, the createFixedDeposit
method inserts fixed deposit details into the FIXED_DEPOSIT_DETAILS table and
returns the auto-generated key. Example listing 7-4 shows that you don’t need
to worry about catching SQLException that may be thrown by the execution of PreparedStatement. This is because JdbcTemplate is responsible for catching SQLExceptions and handling them.

Let’s now
look at NamedParameterJdbcTemplate class.

NamedParameterJdbcTemplate

As shown
in example listing 7-4, if you are using JdbcTemplate class for database
interaction, parameters to be passed to the SQL statement are specified using ?
placeholders. Spring’s NamedParameterJdbcTemplate is a wrapper around JdbcTemplate instance that allows you to use named parameters in the SQL
statement rather than using ? .

The
following example listing shows how the NamedParameterJdbcTemplate class is
configured in the application context XML file:

Example listing 7-5 – applicationContext.xml – NamedParameterJdbcTemplate configuration

Project
– ch07-bankapp-jdbc

Source location -
src/main/resources/META-INF/spring

 <bean id="namedJdbcTemplate"

class="org.springframework.jdbc.core.namedparam.NamedParameterJdbcTemplate">

 <constructor-arg
index="0" ref="dataSource" />

 </bean>

 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource".....>

 </bean>

The above
example listing shows that the NamedParameterJdbcTemplate class accepts javax.sql.DataSource object as constructor argument.

The
following example listing shows the FixedDepositDaoImpl class that uses NamedParameterJdbcTemplate to fetch fixed deposit details from the FIXED_DEPOSIT_DETAILS table:

Example listing 7-6 – FixedDepositDaoImpl class – NamedParameterJdbcTemplate usage

Project
– ch07-bankapp-jdbc

Source location -
src/main/java/sample/spring/chapter07/bankapp/dao

package sample.spring.chapter07.bankapp.dao;

import java.sql.ResultSet;

import
org.springframework.jdbc.core.RowMapper;

import
org.springframework.jdbc.core.namedparam.MapSqlParameterSource;

import
org.springframework.jdbc.core.namedparam.NamedParameterJdbcTemplate;

import
org.springframework.jdbc.core.namedparam.SqlParameterSource;

.....

@Repository(value = "FixedDepositDao")

public class FixedDepositDaoImpl implements FixedDepositDao
{

 @Autowired

 private NamedParameterJdbcTemplate
namedParameterJdbcTemplate;

 public FixedDepositDetails getFixedDeposit(final
int FixedDepositId) {

 final String sql = "select *
from fixed_deposit_details where fixed_deposit_id

 = :FixedDepositId";

 SqlParameterSource namedParameters
= new MapSqlParameterSource(

 "FixedDepositId",
FixedDepositId);

 return namedParameterJdbcTemplate.queryForObject(sql,
namedParameters,

 new RowMapper<FixedDepositDetails>()
{

 public FixedDepositDetails
mapRow(ResultSet rs, int rowNum) throws SQLException {

 FixedDepositDetails fixedDepositDetails
= new FixedDepositDetails();

 fixedDepositDetails.setActive(rs.getString("active"));

 return fixedDepositDetails;

 }

 });

 }

}

NamedParameterJdbcTemplate instance that
we configured in the application context XML file (refer example listing 7-5)
is autowired into FixedDepositDaoImpl class. In the above example listing, the SQL query passed to NamedParameterJdbcTemplate’s queryForObject method contains a named parameter FixedDepositId. The named parameter
values are supplied via an implementation of Spring’s SqlParameterSource interface. MapSqlParameterSource class is an implementation of SqlParameterSource interface that
stores named parameters (and their values) in a java.util.Map. In the above example
listing, MapSqlParameterSource instance holds value of FixedDepositId named parameter. NamedParameterJdbcTemplate’s queryForObject method executes the supplied SQL query and returns a single object.
Spring’s RowMapper object is used for mapping each returned row to an object. In the
above example listing, RowMapper maps the returned row in the ResultSet to a FixedDepositDetails object.

Let’s now
look at Spring’s SimpleJdbcInsert class.

SimpleJdbcInsert

SimpleJdbcInsert class makes use of
database metadata to simplify creating a basic SQL insert statement for a
table.

The
following example listing shows the BankAccountDaoImpl class that makes
use of SimpleJdbcInsert to insert bank account details into BANK_ACCOUNT_DETAILS table:

Example listing 7-7 – BankAccountDaoImpl class – SimpleJdbcInsert usage

Project
– ch07-bankapp-jdbc

Source location -
src/main/java/sample/spring/chapter07/bankapp/dao

package sample.spring.chapter07.bankapp.dao;

import javax.sql.DataSource;

import
org.springframework.jdbc.core.simple.SimpleJdbcInsert;

.....

@Repository(value =
"bankAccountDao")

public class BankAccountDaoImpl implements
BankAccountDao {

 private SimpleJdbcInsert
insertBankAccountDetail;

 @Autowired

 private void setDataSource(DataSource
dataSource) {

 this.insertBankAccountDetail = new
SimpleJdbcInsert(dataSource)

 .withTableName("bank_account_details")

 .usingGeneratedKeyColumns("account_id");

 }

 @Override

 public int createBankAccount(final
BankAccountDetails bankAccountDetails) {

 Map<String, Object>
parameters = new HashMap<String, Object>(2);

 parameters.put("balance_amount",
bankAccountDetails.getBalanceAmount());

 parameters.put("last_transaction_ts",
new java.sql.Date(

 bankAccountDetails.getLastTransactionTimestamp().getTime()));

 Number key = insertBankAccountDetail.executeAndReturnKey(parameters);

 return key.intValue();

 }

}

As the setDataSource
method is annotated with @Autowired annotation, javax.sql.DataSource object is passed as an argument to the setDataSource
method. In the setDataSource method, an instance of SimpleJdbcInsert is created by passing
reference to javax.sql.DataSource object to the SimpleJdbcInsert constructor.

SimpleJdbcInsert’s withTableName
method sets the name of the table into which you want to insert record(s). As
we want to insert bank account details into BANK_ACCOUNT_DETAILS table,
‘bank_account_details’ string value is passed as argument to the withTableName
method. SimpleJdbcInsert’s usingGeneratedKeyColumns method sets names of table columns that contain auto-generated
keys. In case of BANK_ACCOUNT_DETAILS table, ACCOUNT_ID column contains the auto-generated key; therefore, ‘account_id’
string value is passed to the usingGeneratedKeyColumns method. The actual insert operation is performed by calling SimpleJdbcInsert’s executeAndReturnKey method. The executeAndReturnKey method accepts a java.util.Map type argument that contains table column names and their
corresponding values, and returns the generated key value. You should note that the SimpleJdbcInsert class internally uses JdbcTemplate to execute the actual
SQL insert operation.

If you
look at BankAccountDaoImpl class of ch07-bankapp-jdbc project, you’ll notice that it makes use of both SimpleJdbcInsert and JdbcTemplate classes to interact with the database. Similarly, FixedDepositDaoImpl class of ch07-bankapp-jdbc project uses both JdbcTemplate and NamedParameterJdbcTemplate classes for database interaction. This shows that you can use a
combination of Spring’s JDBC module classes to interact with a database.

NOTE
As ch07-bankapp-jdbc project makes use of Spring’s JDBC module and
uses Spring’s Transaction Management feature (explained in section 7-5), the pom.xml file of ch07-bankapp-jdbc project depends on spring-jdbc and spring-tx
JAR files.

Let’s now
look at BankApp class of ch07-bankapp-jdbc project that creates a bank account and opens a fixed deposit
corresponding to it.

BankApp class

BankApp class of ch07-bankapp-jdbc project runs the MyBank application as a standalone Java
application. BankApp’s main method creates a bank account in the BANK_ACCOUNT_DETAILS table and
creates a fixed deposit (corresponding to the newly created bank account) in
the FIXED_DEPOSIT_DETAILS table.

The
following example listing shows the BankApp class:

Example listing 7-8 – BankApp
class

Project
– ch07-bankapp-jdbc

Source location -
src/main/java/sample/spring/chapter07/bankapp

package sample.spring.chapter07.bankapp;

.....

public class BankApp {

 private static Logger logger =
Logger.getLogger(BankApp.class);

 public static void main(String
args[]) throws Exception {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

"classpath:META-INF/spring/applicationContext.xml");

 BankAccountService
bankAccountService = context.getBean(BankAccountService.class);

 BankAccountDetails bankAccountDetails
= new BankAccountDetails();

 int bankAccountId =
bankAccountService.createBankAccount(bankAccountDetails);

 FixedDepositService
FixedDepositService = context.getBean(FixedDepositService.class);

 FixedDepositDetails fixedDepositDetails
= new FixedDepositDetails();

 int FixedDepositId =
FixedDepositService.createFixedDeposit(fixedDepositDetails);

 }

}

In the
above example listing, the BankAccountService object interacts with BankAccountDaoImpl (refer example
listing 7-7) to create a bank account, and FixedDepositService object interacts
with FixedDepositDaoImpl (refer example listing 7-4 and 7-6) object to open a fixed deposit
corresponding to the newly created bank account. If you execute BankApp’s main method,
you’ll find that a new record is inserted into both BANK_ACCOUNT_DETAILS and FIXED_DEPOSIT_DETAILS tables.

In this
section, we looked at how Spring’s JDBC module simplifies updating or fetching
data from databases. Spring’s JDBC module can also be used for the following
purposes:

·
executing stored procedures and functions. For
instance, you can use Spring’s SimpleJdbcCall class for executing stored procedures and functions

·
executing prepared statements in batches

·
accessing relational databases in an
object-oriented manner. For instance, you can extend Spring’s MappingSqlQuery class to create an SQL query and map the returned ResultSet to a
domain object.

·
configuring an embedded database instance. For
instance, you can Spring’s jdbc schema to create an instance of HSQL, H2 or Derby databases, and
register the database instance with the Spring container as a bean of type javax.sql.DataSource.

Let’s now
look at how we can use Spring’s support for Hibernate ORM framework to interact
with databases.

7-4
Developing the MyBank application using Hibernate

Spring’s
ORM module provides integration with Hibernate, Java Persistence API (JPA),
MyBatis, and Java Data Objects (JDO). In this section, we’ll see how Spring
simplifies using Hibernate framework for database interaction. As Hibernate
itself is a JPA provider, we’ll use JPA annotations to map our persistent
entity classes to database tables.

IMPORT chapter 7/ch07-bankapp-hibernate (This project shows the MyBank
application that uses Hibernate to interact with the database. To run the
application, execute the main method of the BankApp
class of this project.)

Let’s
first look at how to configure Hibernate’s SessionFactory instance.

Configuring SessionFactory instance

SessionFactory is a factory for
creating Hibernate’s Session object. It is the Session object that is used by DAOs to perform create, read, delete and
update operations on persistent entities. Spring’s org.springframework.orm.hibernate4.LocalSessionFactoryBean (a FactoryBean implementation) creates a SessionFactory instance that can be
used by DAO classes for obtaining a Session instance.

NOTE
If you want to use JPA’s EntityManager in your application’s DAOs for database interaction,
configure Spring’s LocalContainerEntityManagerFactoryBean instead of org.springframework.orm.hibernate4.LocalSessionFactoryBean.

The
following example listing shows how the LocalSessionFactoryBean class is
configured in the application context XML file:

Example listing 7-9 – applicationContext.xml - LocalSessionFactoryBean configuration

Project
– ch07-bankapp-hibernate

Source location -
src/main/java/sample/spring/chapter07/bankapp

 <bean id="sessionFactory"

 class=" org.springframework.orm.hibernate4.LocalSessionFactoryBean">

 <property
name="dataSource" ref="dataSource" />

 <property
name="packagesToScan" value="sample.spring" />

 </bean>

The dataSource
property specifies reference to a bean of type javax.sql.DataSource. The packagesToScan
property specifies the package(s) under which Spring looks for persistent
classes. For instance, the above example listing specifies that if a persistent
class is annotated with JPA’s @Entity annotation, and is located inside sample.spring package (or its
sub-packages), it is automatically detected by org.springframework.orm.hibernate4. LocalSessionFactoryBean. An alternative to using packagesToScan property is to
explicitly specify all the persistent classes using annotatedClasses property, as shown in the following example listing:

Example listing 7-10 LocalSessionFactoryBean’s annotatedClasses property

 <bean id="sessionFactory"

 class="org.springframework.orm.hibernate4.LocalSessionFactoryBean">

 <property
name="dataSource" ref="dataSource" />

 <property
name="annotatedClasses">

 <list>

 <value>sample.spring.chapter07.bankapp.domain.BankAccountDetails</value>

 <value>sample.spring.chapter07.bankapp.domain.FixedDepositDetails</value>

 </list>

 </property>

 </bean>

In the
above example listing, annotatedClasses property (of type java.util.List) lists down all the persistent classes in the application.

NOTE If you are using Hibernate 3, use Spring’s org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean instead of org.springframework.orm.hibernate4.LocalSessionFactoryBean to create a SessionFactory instance.

As we have
configured LocalSessionFactoryBean, let’s now look at DAOs that make use of SessionFactory
instance created by LocalSessionFactoryBean to perform database operations.

Creating DAOs
that use Hibernate API for database interaction

To
interact with the database, DAOs need access to Hibernate’s Session
object. To access Hibernate’s Session object, inject the SessionFactory instance created by LocalSessionFactoryBean bean (refer example listing 7-9) into DAOs, and use the injected SessionFactory
instance to obtain a Session instance.

The
following example listing shows the FixedDepositDaoImpl class that uses
Hibernate API for saving and retrieving the FixedDepositDetails persistent
entity:

Example listing 7-11 – FixedDepositDaoImpl class - Hibernate API usage

Project
– ch07-bankapp-hibernate

Source location -
src/main/java/sample/spring/chapter07/bankapp/dao

package sample.spring.chapter07.bankapp.dao;

import org.hibernate.SessionFactory;

.....

@Repository(value =
"FixedDepositDao")

public class FixedDepositDaoImpl implements FixedDepositDao
{

 @Autowired

 private SessionFactory sessionFactory;

 public int createFixedDeposit(final FixedDepositDetails
fixedDepositDetails) {

 sessionFactory.getCurrentSession().save(fixedDepositDetails);

 return fixedDepositDetails.getFixedDepositId();

 }

 public FixedDepositDetails getFixedDeposit(final
int FixedDepositId) {

 String hql = "from FixedDepositDetails
as FixedDepositDetails where "

 + "FixedDepositDetails.FixedDepositId
="

 + FixedDepositId;

 return (FixedDepositDetails)
sessionFactory.getCurrentSession()

 .createQuery(hql).uniqueResult();

 }

}

The above
example listing shows that an instance of SessionFactory is autowired into FixedDepositDaoImpl instance, which is later used by createFixedDeposit and getFixedDeposit methods to save and retrieve FixedDepositDetails persistent
entity. Autowiring of SessionFactory instance shows that you can autowire an object created by Spring’s FactoryBean
implementation by simply defining the type created by the FactoryBean
and annotating it with @Autowired annotation (refer section 3-9 of chapter 3 to know more about
Spring’s FactoryBean interface). The createFixedDeposit and getFixedDeposit methods call SessionFactory’s getCurrentSession method to obtain an instance of Session. It is important to note that
the call to getCurrentSession method returns the Session object associated with the current transaction or thread. Using getCurrentSession method is useful if you want Spring to manage transactions, which
is the case in MyBank application.

Let’s now
look at Spring’s programmatic and declarative transaction management feature.

7-5
Transaction management using Spring

Spring
Framework supports both programmatic and declarative transaction management. In
programmatic transaction management, Spring’s transaction management
abstraction is used to explicitly start, end and commit transactions. In
declarative transaction management, you annotate methods that execute within a
transaction with Spring’s @Transactional annotation.

Let’s
first look at the transaction management requirement of MyBank application
described in section 7-2.

MyBank’s
transaction management requirements

In section
7-2, it was mentioned that when a bank customer opens a new fixed deposit, the
fixed deposit amount is deducted from the BANK_ACCOUNT_DETAILS table’s BALANCE_AMOUNT
column, and the fixed deposit details are saved in the FIXED_DEPOSIT_DETAILS table.

The
following sequence diagram shows that the createFixedDeposit method of FixedDepositServiceImpl class saves the fixed deposit details in FIXED_DEPOSIT_DETAILS table and deducts the fixed deposit amount from the corresponding
bank account in BANK_ACCOUNT_DETAILS table:

Figure 7-2 The sequence of
actions performed by MyBank application when a customer opens a new fixed
deposit

The above
sequence diagram shows that FixedDepositServiceImpl’s createFixedDeposit method calls FixedDepositDaoImpl’s createFixedDeposit method and BankAccountDaoImpl’s subtractFromAccount method. FixedDepositDaoImpl’s createFixedDeposit method saves the fixed deposit details in the FIXED_DEPOSIT_DETAILS table. BankAccountDaoImpl’s subtractFromAccount method first checks that the customer’s bank account contains
sufficient balance to create the fixed deposit of the specified amount. If
sufficient balance is available in customer’s bank account, the subtractFromAccount method deducts the fixed deposit amount from the customer’s bank
account. If sufficient balance isn’t available, an exception is thrown by BankAccountDaoImpl’s subtractFromAccount method. If FixedDepositDaoImpl’s createFixedDeposit
or BankAccountDaoImpl’s subtractFromAccount method fails for some reason, the system will be left in an
inconsistent state; therefore, both the methods must be executed within a transaction.

Let’s now
look at how you can use Spring to programmatically manage transactions in the MyBank
application.

Programmatic
transaction management

You can
programmatically manage transactions by using Spring’s TransactionTemplate class or by using an implementation of Spring’s PlatformTransactionManager interface. TransactionTemplate class simplifies transaction management by taking care of initiating and committing transactions. You only need to provide an implementation of
Spring’s TransactionCallback interface that contains the code to be executed within a
transaction.

IMPORT chapter 7/ch07-bankapp-tx-jdbc (This project shows the MyBank
application that uses Spring’s TransactionTemplate class for programmatically managing transactions. To run the
application, execute the main method of the BankApp
class of this project. Create SPRING_BANK_APP_DB database, and BANK_ACCOUNT_DETAILS and FIXED_DEPOSIT_DETAILS tables as described for ch07-bankapp-jdbc project)

The
following example listing shows how the TransactionTemplate class is
configured in the application context XML file:

Example listing 7-12 – applicationContext.xml - TransactionTemplate configuration

Project
– ch07-bankapp-tx-jdbc

Source location -
src/main/resources/META-INF/spring

 <bean id="dataSource"
class="org.apache.commons.dbcp.BasicDataSource".....>

 </bean>

 <bean id="txManager"

 class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

 <property
name="dataSource" ref="dataSource" />

 </bean>

 <bean
id="transactionTemplate"

 class="org.springframework.transaction.support.TransactionTemplate">

 <property name="transactionManager"
ref="txManager"/>

 <property name="isolationLevelName"
value="ISOLATION_READ_UNCOMMITTED" />

 <property name="propagationBehaviorName"
value="PROPAGATION_REQUIRED" />

 </bean>

TransactionTemplate’s transactionManager property refers to Spring’s PlatformTransactionManager
implementation that is responsible for managing transactions.

TransactionTemplate’s isolationLevelName property specifies the transaction isolation level to be set for
the transactions managed by the transaction manager. The value of isolationLevelName property refers to a constant defined by Spring’s TransactionDefinition interface. For instance, ISOLATION_READ_UNCOMMITTED is a
constant defined by TransactionDefinition interface that indicates that the uncommitted changes by a
transaction can be read by other transactions.

TransactionTemplate’s propagationBehaviorName property specifies the transaction propagation behavior. The value
of propagationBehaviorName property refers to a constant defined by Spring’s TransactionDefinition interface. For instance, PROPAGATION_REQUIRED is a constant
defined by TransactionDefinition interface that indicates:

·
if a method is not
invoked within a transaction, the transaction manager starts a new transaction
and executes the method in the newly created transaction

·
if a method is invoked within a transaction, the
transaction manager executes the method in the same
transaction

Spring
provides a couple of built-in PlatformTransactionManager implementations that you can choose from, depending upon the data
access technology used by your application. For instance, DataSourceTransactionManager is appropriate for managing transactions in applications that use
JDBC for interacting with a database, HibernateTransactionManager is appropriate when Hibernate is used for database interaction and JpaTransactionManager when JPA’s EntityManager is used for data access. In example listing 7-12, TransactionTemplate’s transactionManager property refers to a DataSourceTransactionManager instance
because the MyBank application of ch07-bankapp-tx-jdbc project uses
JDBC for data access. The example listing 7-12 shows that DataSourceTransactionManager’s dataSource property refers to a javax.sql.DataSource object that
represents the database whose transactions are managed by the DataSourceTransactionManager instance.

The
following example listing shows the FixedDepositServiceImpl class that
uses TransactionTemplate instance for transaction management:

Example listing 7-13 – FixedDepositServiceImpl class that uses TransactionTemplate

Project
– ch07-bankapp-tx-jdbc

Source location - src/main/java/sample/spring/chapter07/bankapp/service

package sample.spring.chapter07.bankapp.service;

import org.springframework.transaction.TransactionStatus;

import
org.springframework.transaction.support.TransactionCallback;

import
org.springframework.transaction.support.TransactionTemplate;

.....

@Service(value = "FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @Autowired

 private TransactionTemplate
transactionTemplate;

 @Override

 public int createFixedDeposit(final FixedDepositDetails
fixedDepositDetails) throws Exception {

 transactionTemplate.execute(new
TransactionCallback<FixedDepositDetails>() {

 public
FixedDepositDetails doInTransaction(TransactionStatus status) {

 try {

 myFixedDepositDao.createFixedDeposit(fixedDepositDetails);

bankAccountDao.subtractFromAccount(

 fixedDepositDetails.getBankAccountId(),

fixedDepositDetails.getFixedDepositAmount()

);

 } catch (Exception
e) { status.setRollbackOnly(); }

 return
fixedDepositDetails;

 }

 });

 return fixedDepositDetails.getFixedDepositId();

 }

}

The above
example listing shows FixedDepositServiceImpl’s createFixedDeposit method (refer figure 7-2 for more details) that saves fixed deposit
details in the FIXED_DEPOSIT_DETAILS table, and deducts the fixed deposit amount from the corresponding
bank account in the BANK_ACCOUNT_DETAILS table.

You create
an implementation of TransactionCallback interface to define the actions that you want to execute within a
transaction. And, TransactionTemplate’s execute method executes the actions contained in the TransactionCallback instance within a transaction. TransactionCallback interface defines
a doInTransaction method that you implement to provide the actions that should be
executed within a transaction. TransactionCallback’s doInTransaction method is invoked within a transaction by TransactionTemplate’s execute method. The
doInTransaction method accepts a TransactionStatus object that you can use to control the outcome of the transaction.
In example listing 7-13, TransactionCallback’s doInTransaction method contains calls to FixedDepositDaoImpl’s createFixedDeposit method and BankAccountDaoImpl’s subtractFromAccount method because we want both the methods to be executed within a
single transaction. As we’d want to roll back the transaction if either of the
methods fails, the setRollbackOnly method of TransactionStatus is invoked in case of an exception. If you call TransactionStatus’s setRollbackOnly method, the TransactionTemplate instance roll backs the transaction. A transaction will be
automatically rolled back if the actions contained in the doInTransaction method result in a java.lang.RuntimeException.

TransactionCallback instance accepts
a generic
type argument which refers to the object type
returned by the doInTransaction method. In example listing 7-13, a FixedDepositDetails object is
returned by the doInTransaction method. If you don’t want the doInTransaction method to return any
object, use the TransactionCallbackWithoutResult abstract class that implements the TransactionCallback interface. The TransactionCallbackWithoutResult class allows you to create TransactionCallback implementations
in which doInTransaction method doesn’t return a value.

The
following example listing shows the main method of BankApp class
that calls BankAccountServiceImpl’s createBankAccount method to create a bank account, and FixedDepositServiceImpl’s createFixedDeposit method to create a fixed deposit corresponding to the newly created
bank account:

Example listing 7-14 – BankApp class

Project
– ch07-bankapp-tx-jdbc

Source location - src/main/java/sample/spring/chapter07/bankapp

package sample.spring.chapter07.bankapp;

public class BankApp {

 public static void main(String args[])
throws Exception {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

"classpath:META-INF/spring/applicationContext.xml");

 BankAccountService bankAccountService
= context.getBean(BankAccountService.class);

 FixedDepositService FixedDepositService
= context.getBean(FixedDepositService.class);

 BankAccountDetails bankAccountDetails
= new BankAccountDetails();

 bankAccountDetails.setBalanceAmount(1000);

 int bankAccountId =
bankAccountService.createBankAccount(bankAccountDetails);

 FixedDepositDetails fixedDepositDetails
= new FixedDepositDetails();

 fixedDepositDetails.setFixedDepositAmount(1500);

 fixedDepositDetails.setBankAccountId(bankAccountId);

 int FixedDepositId =
FixedDepositService.createFixedDeposit(fixedDepositDetails);

 }

}

The above
example listing shows that a bank account is first created with a balance
amount of 1000, followed by creating a fixed deposit of amount 1500. As fixed
deposit amount is greater than the balance in the bank account, BankAccountDaoImpl’s subtractFromAccount method throws an exception (refer BankAccountDaoImpl’s subtractFromAccount method or figure 7-2).

If you
execute BankApp’s main method, you’ll notice that the fixed deposit is not created in the FIXED_DEPOSIT_DETAILS table, and 1500 amount is not
deducted from the BANK_ACCOUNT_DETAILS table. This shows that both FixedDepositDaoImpl’s createFixedDeposit and BankAccountDaoImpl’s subtractFromAccount are executed in the same transaction.

Instead of
using TransactionTemplate class, you can directly use a PlatformTransactionManager
implementation to programmatically manage transactions. When using PlatformTransactionManager implementation, you are required to explicitly initiate and commit
(or roll back) transactions. For this reason, it is recommended to use TransactionTemplate instead of directly using a PlatformTransactionManager
implementation.

Let’s now
look at declarative transaction management feature of Spring.

Declarative
transaction management

Programmatic
transaction management couples your application code with Spring-specific
classes. On the other hand, declarative transaction management requires you to
only annotate methods or classes with Spring’s @Transactional annotation. If you
want to execute a method within a transaction, annotate the method with @Transactional
annotation. If you want to execute all the
methods of a class within a transaction, annotate the class with @Transactional
annotation.

NOTE Instead of using @Transactional annotation for declarative transaction management, you can
use Spring’s tx schema elements to identify transactional
methods. As using Spring’s tx schema
results in verbose application context XML file, we’ll be only looking at using
@Transactional annotation for declarative transaction
management.

IMPORT chapter 7/ch07-bankapp-jdbc and chapter 7/ch07-bankapp-hibernate (The ch07-bankapp-jdbc project shows the MyBank application that uses Spring’s JDBC module
for database interaction (refer section 7-3 to learn more about ch07-bankapp-jdbc project). The ch07-bankapp-hibernate project shows the MyBank application that uses Hibernate to
interact with the database (refer section 7-4 to learn more about ch07-bankapp-hibernate project).

You enable
declarative transaction management using <annotation-driven> element of
Spring’s tx schema. The following example listing shows the <annotation-driven> element’s usage in ch07-bankapp-jdbc project:

Example listing 7-15 – applicationContext.xml
- <annotation-driven> element

Project
– ch07-bankapp-jdbc

Source location -
src/main/resources/META-INF/spring

<beans xmlns:tx="http://www.springframework.org/schema/tx"

xsi:schemaLocation=".....http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-4.0.xsd">

 <tx:annotation-driven
transaction-manager="txManager" />

 <bean id="txManager"

class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

 <property
name="dataSource" ref="dataSource" />

 </bean>

</beans>

In the
above example listing, Spring’s tx schema is included so that its elements are accessible in the application
context XML file. The <annotation-driven> element enables declarative transaction management. The <annotation-driven> element’s transaction-manager attribute specifies reference to the PlatformTransactionManager
implementation to use for transaction management. The above example listing
shows that the DataSourceTransactionManager is used as the transaction manager in ch07-bankapp-jdbc project.

The
following example listing shows how you can use declarative transaction
management in ch07-bankapp-hibernate project that uses Hibernate ORM for data access:

Example listing 7-16 – applicationContext.xml - <annotation-driven> element

Project
– ch07-bankapp-hibernate

Source location -
src/main/resources/META-INF/spring

<beans
xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation=".....http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx/spring-tx-4.0.xsd">

 <tx:annotation-driven
transaction-manager="txManager" />

 <bean id="txManager"

 class="org.springframework.orm.hibernate4.HibernateTransactionManager">

 <property
name="sessionFactory" ref="sessionFactory"/>

 </bean>

</beans>

If you
compare the above example listing with 7-15, you’ll notice that the only
difference is in the PlatformTransactionManager implementation referenced by the transaction-manager attribute of <annotation-driven> element. The above example listing shows that if Hibernate ORM is
used for database interaction, the org.springframework.orm.hibernate4.HibernateTransactionManager implementation of PlatformTransactionManager is used for managing transactions.

NOTE
If you are using Hibernate 3, set transaction-manager attribute to org.springframework.orm.hibernate3.HibernateTransactionManager instead of org.springframework.orm.hibernate4.HibernateTransactionManager.

The
following example listing shows the FixedDepositServiceImpl class that
makes use of declarative transaction management:

Example listing 7-17 – FixedDepositServiceImpl class - @Transactional annotation usage

Project
– ch07-bankapp-jdbc

Source location - src/main/java/sample/spring/chapter07/bankapp/service

package sample.spring.chapter07.bankapp.service;

import
org.springframework.transaction.annotation.Transactional;

.....

@Service(value = "FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @Transactional

 public int
createFixedDeposit(FixedDepositDetails fixedDepositDetails) throws Exception {

 bankAccountDao.subtractFromAccount(fixedDepositDetails.getBankAccountId(),

 fixedDepositDetails.getFixedDepositAmount());

 return myFixedDepositDao.createFixedDeposit(fixedDepositDetails);

 }

}

In the
above example listing, the createFixedDeposit method is annotated with @Transactional annotation. This means
that the createFixedDeposit method is executed within a transaction. The transaction manager
specified via the transaction-manager attribute of <annotation-driven> element (refer example listing 7-15 and 7-16) is used for managing
the transaction. If a java.lang.RuntimeException is thrown during execution of createFixedDeposit method, the
transaction is automatically rolled back.

@Transactional annotation defines
attributes that you can use to configure the behavior of the transaction
manager. For instance, you can use the rollbackFor attribute to specify
exception classes that result in transaction roll back. The exception classes
specified by rollbackFor attribute must be subclasses of java.lang.Throwable
class. Similarly, you can use isolation
attribute to specify the transaction isolation level.

In case
your application defines multiple transaction managers, you can use @Transactional
annotation’s value attribute to specify the bean name of the PlatformTransactionManager implementation that you want to use for managing transactions. The
following example listing shows that 2 transaction managers, tx1 and tx2, are
defined in the application context XML file. The tx1 transaction manager is used by SomeServiceImpl’s methodA and tx2 transaction manager is used by SomeServiceImpl’s methodB:

Example listing 7-18 – @Transactional’s value attribute usage

SomeServiceImpl class ------------------------

@Service

public class SomeServiceImpl implements
SomeService {

 @Transactional(value =
"tx1")

 public int methodA() {.....}

 @Transactional(value =
"tx2")

 public int methodB() {.....}

}

application context XML file ------------------------

 <tx:annotation-driven />

 <bean id="tx1"

class="org.springframework.orm.hibernate4.HibernateTransactionManager">

 <property
name="sessionFactory1" ref="sessionFactory1"/>

 </bean>

 <bean id="tx2"

class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

 <property
name="dataSource" ref="dataSource" />

 </bean>

In the
above example listing, the <annotation-driven> element of Spring’s tx schema doesn’t specify the transaction-manager attribute because
the transaction manager to use for managing transactions is specified by the @Transactional
annotation itself. In the above example listing, @Transactional annotation’s value
attribute specifies the transaction manager to use for managing transactions.
This means that SomeServiceImpl’s methodA
executes under tx1 transaction manager and SomeServiceImpl’s methodB
executes under tx2 transaction manager.

Let’s now
look at Spring’s support for JTA (Java Transaction API) transactions.

Spring’s
support for JTA

In chapter
1, we discussed that when multiple transactional resources are involved in a
transaction, JTA is used for transaction management. Spring provides a generic JtaTransactionManager class (a PlatformTransactionManager implementation) that you can use in applications to manage JTA
transactions.

Figure 7-3 JTA transaction
managers and resource-specific transaction managers implement PlatformTransactionManager interface

In most
application server environments, the JtaTransactionManager will meet your requirements. But, Spring also provides
vendor-specific PlatformTransactionManager implementations that leverage application server-specific features
to manage JTA transactions. The vendor-specific JTA transaction managers
provided by Spring are: OC4JJtaTransactionManager (for Oracle OC4J), WebLogicJtaTransactionManager (for WebLogic application server), WebSphereUowTransactionManager (for
WebSphere application server). Figure 7-3 summarizes how JTA transaction
managers and resource-specific transaction managers are related to the PlatformTransactionManager interface. The figure shows that the PlatformTransactionManager is
implemented by both JTA transaction manager classes and resource-specific
transaction manager classes.

Let’s now
look at how Spring simplifies configuring a JTA transaction manager in
application context XML file.

Configuring a JTA
transaction manager using
<jta-transaction-manager> element

Spring’s tx schema
provides a <jta-transaction-manager> element that automatically detects the application server in which
the application is deployed and configures an appropriate JTA transaction
manager. This saves the effort for explicitly configuring an application
server-specific JTA transaction manager in the application context XML file.
For instance, if you deploy an application in WebSphere application server, the
<jta-transaction-manager> element configures an instance of WebSphereUowTransactionManager
instance. If the same application is deployed in WebLogic application server,
the <jta-transaction-manager> element configures an instance of WebLogicJtaTransactionManager
instance. If the application is deployed in any application server other than
OC4J, WebSphere or WebLogic, the <jta-transaction-manager>
element configures an instance of JtaTransactionManager instance.

7-6 Summary

In this
chapter, we saw that Spring supports database interaction using JDBC and
Hibernate ORM framework. We also saw how we can use Spring to manage
transactions programmatically and declaratively. In the next chapter, we’ll
look at how Spring simplifies sending emails, interaction with messaging
middlewares, and perform transparent caching of data.

Chapter 8 - Messaging, emailing, asynchronous
method execution, and caching using Spring

8-1
Introduction

In the
previous chapter, we saw that Spring simplifies database interaction. In the
context of MyBank application, this chapter goes a step further and shows how
Spring simplifies:

·
sending and receiving JMS messages from a JMS
provider, like ActiveMQ

·
sending email messages

·
asynchronously executing methods

·
storing and retrieving data from cache

Let’s
first look at the MyBank application’s requirements that we’ll implement in
this chapter.

8-2 MyBank
application’s requirements

MyBank
application allows its customers to open fixed deposits and retrieve details of
their existing fixed deposits. Figure 8-1 shows the sequence of events that
occur when a customer requests for opening a new fixed deposit.

First, FixedDepositService’s createFixedDeposit method is invoked that sends 2 JMS messages – a message containing
customer’s email id, and a message that contains fixed deposit details. EmailMessageListener retrieves the JMS message containing the email id of the customer
and sends an email to the customer informing that the request for opening a
fixed deposit has been received. FixedDepositMessageListener retrieves
the JMS message containing fixed deposit details and saves the fixed deposit
details in the database.

A
scheduled job runs every 5 seconds to check if any new fixed deposits have been
created in the database. If the job finds any new fixed deposits, it subtracts
the fixed deposit amount from the bank account of the customer and sends an
email to the customer informing that the fixed deposit request has been
successfully processed.

Figure 8-1 MyBank application
behavior when a customer requests for opening a new fixed deposit

The
following diagram shows the behavior of MyBank application when FixedDepositService’s findFixedDepositsByBankAccount
method is invoked to retrieve all fixed deposits
corresponding to a bank account:

Figure 8-2 MyBank application
behavior when a customer requests for the details of all his fixed deposits

The above
figure shows that when FixedDepositService’s findFixedDepositsByBankAccount
method is invoked, the fixed deposit information
is fetched from the database and cached into memory. If you can FixedDepositService’s findFixedDepositsByBankAccount again, the fixed deposit information is fetched from the cache and
not from the database.

Let’s now
look at how Spring is used in the MyBank application to send JMS messages to
JMS destinations configured in ActiveMQ.

IMPORT chapter 8/ch08-bankapp (To get the most of out of this
chapter, install MySQL database and execute the spring_bank_app_db.sql SQL script
contained in the sql folder of ch08-bankapp project. Executing spring_bank_app_db.sql script creates SPRING_BANK_APP_DB database and adds BANK_ACCOUNT_DETAILS and FIXED_DEPOSIT_DETAILS tables to the SPRING_BANK_APP_DB database. Modify the src/main/resources/META-INF/spring/database.properties to point to your MySQL installation. To get the email feature
working, modify src/main/resources/META-INF/spring/email.properties to specify the email server and the email account to use for
sending emails. Modify the BankApp class to specify the email id of the customer to whom the emails
are sent)

8-3 Sending
JMS messages

Spring
simplifies interaction with JMS providers by providing a layer of abstraction
on top of JMS API. In the context of MyBank application, this section shows how
to synchronously and asynchronously send and receive messages from an ActiveMQ broker using Spring. For
the sake of simplicity, the ActiveMQ broker is configured to run in embedded mode in ch08-bankapp project.

NOTE
In Spring, JMS support classes are defined in spring-jms JAR file; therefore, you must define that your application
depends on spring-jms JAR file to use Spring’s support for JMS.

Configuring
ActiveMQ broker to run in embedded mode

An
embedded ActiveMQ broker runs in the same JVM
as the application. You can use ActiveMQ’s XML schema to configure an embedded
ActiveMQ broker in a Spring application. The following example listing shows
how ActiveMQ’s XML schema is used to configure an embedded ActiveMQ broker in MyBank
application:

Example listing 8-1 – applicationContext.xml – embedded ActiveMQ broker configuration

Project
– ch08-bankapp

Source location -
src/main/resources/META-INF/spring

<beans

 xmlns:amq="http://activemq.apache.org/schema/core"

xsi:schemaLocation=".....http://activemq.apache.org/schema/core

 http://activemq.apache.org/schema/core/activemq-core-5.7.0.xsd.....">

 <amq:broker>

 <amq:transportConnectors>

 <amq:transportConnector uri="tcp://localhost:61616"
/>

 </amq:transportConnectors>

 </amq:broker>

</beans>

In the
above example listing, the amq namespace refers to ActiveMQ’s XML schema (activemq-core-5.7.0.xsd) that allows you to configure an embedded ActiveMQ broker. The <broker>
element configures an embedded ActiveMQ broker with name localhost. The
<transportConnectors> element specifies the transport connectors on which the embedded
ActiveMQ broker allows clients to connect. In the above example listing, the <transportConnector> sub-element of <transportConnectors> specifies that clients can connect to the embedded ActiveMQ broker
on port number 61616 using a TCP socket.

Let’s now
look at how to configure a JMS ConnectionFactory for creating connections to the embedded ActiveMQ instance.

Configuring a
JMS ConnectionFactory

The
following example listing shows how a JMS ConnectionFactory is configured in
the application context XML file:

Example listing 8-2 – applicationContext.xml – JMS ConnectionFactory configuration

Project
– ch08-bankapp

Source location -
src/main/resources/META-INF/spring

<beans

 xmlns:amq="http://activemq.apache.org/schema/core"

xsi:schemaLocation=".....http://activemq.apache.org/schema/core

 http://activemq.apache.org/schema/core/activemq-core-5.7.0.xsd.....">

 <amq:connectionFactory brokerURL="vm://localhost"
id="jmsFactory" />

 <bean class="org.springframework.jms.connection.CachingConnectionFactory"

id="cachingConnectionFactory">

 <property name="targetConnectionFactory"
ref="jmsFactory" />

 </bean>

</beans>

In the
above example listing, the <connectionFactory> element of amq schema creates a JMS ConnectionFactory instance that is
used for creating connections to the embedded ActiveMQ instance (refer example
listing 8-1). The brokerUrl attribute specifies the URL for connecting to the ActiveMQ broker.
As we are using embedded ActiveMQ broker, the brokerUrl specifies that VM protocol
(specified by vm://) is used to connect to the ActiveMQ broker instance.

Spring’s CachingConnectionFactory is an adapter for the JMS ConnectionFactory (specified by the targetConnectionFactory property), that provides the additional feature of caching
instances of JMS Session, MessageProducer and MessageConsumer.

Let’s now
look at how to use Spring’s JmsTemplate class to send JMS messages.

Sending JMS
messages using JmsTemplate

Spring’s JmsTemplate
class simplifies synchronously sending and receiving JMS messages. For the purpose of this
chapter, we’ll only look at how to send JMS messages using JmsTemplate.
Like TransactionTemplate (refer section 7-5 of chapter 7) and JdbcTemplate (refer section 7-3 of
chapter 7) classes, the JmsTemplate class provides a layer of abstraction so that you don’t have to
deal with lower-level JMS API.

The
following example listing shows how the JmsTemplate class is configured in
the application context XML file of MyBank application to send messages to the
embedded ActiveMQ instance:

Example listing 8-3 – applicationContext.xml –JmsTemplate configuration

Project
– ch08-bankapp

Source location -
src/main/resources/META-INF/spring

<beans

xmlns:amq="http://activemq.apache.org/schema/core"

 xsi:schemaLocation=".....http://activemq.apache.org/schema/core

 http://activemq.apache.org/schema/core/activemq-core-5.7.0.xsd.....">

 <bean
class="org.springframework.jms.core.JmsTemplate"
id="jmsTemplate">

 <property name="connectionFactory"
ref="cachingConnectionFactory" />

 <property name="defaultDestination"
ref="FixedDepositDestination" />

 </bean>

 <amq:queue
id="FixedDepositDestination"
physicalName="aQueueDestination" />

 <amq:queue id="emailQueueDestination"
physicalName="emailQueueDestination" />

</beans>

JmsTemplate’s connectionFactory property specifies the JMS ConnectionFactory that is used for
creating a connection with the JMS provider. JmsTemplate’s defaultDestination property refers to the default JMS destination to which the JmsTemplate
sends JMS messages. In the above example listing, connectionFactory property refers to the CachingConnectionFactory instance
(refer example listing 8-2), and defaultDestination property refers to
the JMS queue destination created by amq schema’s <queue>
element.

The amq schema’s <queue>
element creates a JMS queue destination in ActiveMQ. In example listing 8-3,
the first <queue> element creates a JMS queue destination named aQueueDestination in ActiveMQ, and the second <queue> element creates a JMS
queue destination named emailQueueDestination in ActiveMQ. The physicalName attribute refers to the name with which the JMS queue destination
is created in ActiveMQ, and id attribute refers to the name with which the JMS queue destination
is accessed by other beans in the Spring container. In example listing 8-3, JmsTemplate’s defaultDestination property refers to the id attribute of the <queue>
element that creates the aQueueDestination JMS destination; therefore, the aQueueDestination
is the default JMS destination to which the JmsTemplate instance sends JMS
messages.

JMS Session used
by JmsTemplate has the acknowledgement mode set to auto-acknowledge and is not
transacted in nature. If you want JmsTemplate to
use transacted Sessions, set JmsTemplate’s transacted property to true. In case of transacted Sessions, a new transaction begins
when the Session is created by the application, or when the transaction is committed
or rolled back. This means that a transacted JMS Session is always associated with a transaction. You can use a transacted JMS Session to
send and receive JMS messages within a transaction. If you use JmsTemplate
with Spring’s JmsTransactionManager, the JmsTemplate instance will always get a transacted JMS Session.

Let’s now
look at how JmsTransactionManager is configured, and JMS messages are sent by JmsTemplate
within a transaction.

Sending JMS
messages within a transaction

In chapter
7, we saw that Spring provides a couple of PlatformTransactionManager
implementations that provide resource-specific transaction management. In your
JMS applications, you can use Spring’s JmsTransactionManager (an implementation of PlatformTransactionManager) class for managing transactions for a single JMS ConnectionFactory. As JmsTransactionManager implements PlatformTransactionManager, you can use TransactionTemplate for programmatically managing JMS transactions or you can use @Transactional
annotation for declaratively managing JMS transactions.

The
following example listing shows the configuration of Spring’s JmsTransactionManager in application context XML file:

Example listing 8-4 – applicationContext.xml – JmsTransactionManager configuration

Project
– ch08-bankapp

Source location -
src/main/resources/META-INF/spring

 <bean id="jmsTxManager"
class="org.springframework.jms.connection.JmsTransactionManager">

 <property
name="connectionFactory" ref="cachingConnectionFactory"
/>

 </bean>

JmsTransactionManager’s connectionFactory property specifies reference to the JMS ConnectionFactory for which the JmsTransactionManager manages transactions. In the above example listing, reference to
Spring’s CachingConnectionFactory bean (refer example listing 8-2) is specified as the value for connectionFactory property. As the CachingConnectionFactory caches JMS Sessions, using CachingConnectionFactory with JmsTransactionManager results in reduced utilization of resources.

If you
want to programmatically manage JMS transactions using TransactionTemplate class, configure the TransactionTemplate class in the
application context XML file. If you want to use declarative transaction
management, use <annotation-driven> element of Spring’s tx schema.

The
following example listing shows the FixedDepositServiceImpl class that
makes use of JmsTemplate to send messages to the embedded ActiveMQ broker:

Example listing 8-5 – FixedDepositServiceImpl class – send JMS messages using JmsTemplate

Project
– ch08-bankapp

Source location - src/main/java/sample/spring/chapter08/bankapp/service

package sample.spring.chapter08.bankapp.service;

import javax.jms.*;

import
org.springframework.jms.core.JmsTemplate;

import
org.springframework.jms.core.MessageCreator;

@Service(value = "FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @Autowired

 private JmsTemplate jmsTemplate;

 @Override

 @Transactional("jmsTxManager")

 public void createFixedDeposit(final FixedDepositDetails
fixedDepositDetails)throws Exception {

 jmsTemplate.send("emailQueueDestination",
new MessageCreator() {

 public Message createMessage(Session
session) throws JMSException {

 TextMessage textMessage
= session.createTextMessage();

 textMessage.setText(fixedDepositDetails.getEmail());

 return textMessage;

 }

 });

 // --this JMS message goes to the
default destination configured for the JmsTemplate

 jmsTemplate.send(new
MessageCreator() {

 public Message createMessage(Session
session) throws JMSException {

 ObjectMessage
objectMessage = session.createObjectMessage();

 objectMessage.setObject(fixedDepositDetails);

 return objectMessage;

 }

 });

 }

}

The above
example listing shows that JmsTemplate’s send method is used to send messages to emailQueueDestination and aQueueDestination JMS destinations. Refer example listing 8-3 to see how these JMS
destinations are configured in the application context XML file. The name of
the JMS destination passed to JmsTemplate’s send method is resolved to the actual JMS Destination object by Spring’s DynamicDestinationResolver instance (an implementation of Spring’s DestinationResolver interface). If you have configured JMS destinations in the
application context XML file using amq schema’s <queue>
(or <topic>) element, the JMS destination name passed to the JmsTemplate’s send message
is the value of id attribute of the <queue> (or <topic>) element corresponding to the JMS destination to which you want to
send messages.

In example
listing 8-5, the FixedDepositServiceImpl’s createFixedDeposit method is annotated with @Transactional("jmsTxManager"), which means that the createFixedDeposit method executes
within a transaction, and the transaction is managed by jmsTxManager
transaction manager (refer example listing 8-4 to see how jmsTxManager
is configured). JmsTemplate’s send method accepts the name of the JMS destination (to which the JMS
message is to be sent) and a MessageCreator instance. If you don’t specify the JMS destination, the send method
sends the JMS message to the default destination that
you configured for the JmsTemplate using defaultDestination property (refer example listing 8-3).

In MessageCreator’s createMessage method you create the JMS message that you want to send. You don’t
need to explicitly handle checked exceptions thrown by JMS API, as they are
taken care by the JmsTemplate itself. Example listing 8-5 shows that if you are using JmsTemplate,
you don’t need to explicitly obtain Connection from ConnectionFactory, create Session from Connection, and so on, for sending JMS messages. So, using JmsTemplate
hides the lower-level JMS API details from the developers.

In example
listing 8-5, the TextMessage and ObjectMessage instances represent JMS messages. Both, TextMessage
and ObjectMessage classes implement javax.jms.Message interface. In the MyBank application, the TextMessage
instance has been used to send the email id (a simple string value) of the
customer requesting to open a fixed deposit, and the ObjectMessage
instance has been used to send FixedDepositDetails object (a Serializable object) that contains fixed deposit information. As the FixedDepositServiceImpl’s createFixedDeposit method executes within a JMS transaction, either both the messages
are sent to the ActiveMQ instance or none.

Instead of
using @Transactional annotation, you can programmatically manage JMS transactions by
using the TransactionTemplate class (refer section 7-5 of chapter 7). The following example
listing shows how you can configure the TransactionTemplate class to use JmsTransactionManager for transaction management:

Example listing 8-6 – TransactionTemplate configuration

 <bean id="jmsTxManager"

class="org.springframework.jms.connection.JmsTransactionManager">

 <property
name="connectionFactory" ref="cachingConnectionFactory"
/>

 </bean>

 <bean id="transactionTemplate"

class="org.springframework.transaction.support.TransactionTemplate">

 <property
name="transactionManager" ref="jmsTxManager" />

 </bean>

In the
above example listing, TransactionTemplate’s transactionManager property refers to the JmsTransactionManager bean.

Once you
have configured the TransactionTemplate class, you can use it to manage JMS transactions. The following
example listing shows a variant of FixedDepositServiceImpl’s createFixedDeposit method that uses TransactionTemplate for managing JMS transactions:

Example listing 8-7 – Programmatically managing JMS transactions using TransactionTemplate

package sample.spring.chapter08.bankapp.service;

import javax.jms.*;

import
org.springframework.jms.core.JmsTemplate;

import
org.springframework.jms.core.MessageCreator;

@Service(value = "FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @Autowired

 private JmsTemplate jmsTemplate;

 @Autowired

 private TransactionTemplate
transactionTemplate;

 public void createFixedDeposit(final FixedDepositDetails
fixedDepositDetails)throws Exception {

 transactionTemplate.execute(new
TransactionCallbackWithoutResult() {

 protected void doInTransactionWithoutResult(TransactionStatus
status) {

 jmsTemplate.send("emailQueueDestination",
new MessageCreator() { });

 jmsTemplate.send(new
MessageCreator() { });

 }

 });

 }

}

The above
example listing shows that JMS messages are sent from within the doInTransaction method of TransactionCallbackWithoutResult class so that they are in the same JMS transaction. This is similar
to how we programmatically managed JDBC transactions (refer section 7-5 of
chapter 7) using TransactionTemplate.

So far we
have seen examples in which JmsTemplate is used to send messages to a pre-configured JMS destination. Let’s now look at how to configure JmsTemplate
class if an application uses dynamic JMS destinations.

Dynamic JMS
destinations and JmsTemplate configuration

If your
application uses dynamic JMS destinations (that is, JMS destinations are
created by the application at runtime), you must specify the JMS destination
type (queue or topic) using pubSubDomain property of JmsTemplate. The pubSubDomain property is used to determine the JMS destination type to which the
JmsTemplate sends JMS messages. If you don’t specify the pubSubDomain
property, by default JMS queue is assumed to be the destination type.

The
following example listing shows the JmsTemplate that sends messages to a
dynamically created JMS topic:

Example listing 8-8 – Using JmsTemplate for sending messages to dynamic JMS topic destinations

applicationContext.xml ---------------------

 <bean
class="org.springframework.jms.core.JmsTemplate"
id="jmsTemplate">

 <property
name="connectionFactory" ref="cachingConnectionFactory"
/>

 <property
name="defaultDestination" ref="FixedDepositDestination"
/>

 <property
name="pubSubDomain" value="true" />

 </bean>

Dynamic topic creation ------------------

 jmsTemplate.send("dynamicTopic",
new MessageCreator() {

 public Message
createMessage(Session session) throws JMSException {

 session.createTopic("dynamicTopic");

 ObjectMessage objectMessage =
session.createObjectMessage();

objectMessage.setObject(someObject);

 return objectMessage;

 }

 });

In the
above example listing, JmsTemplate’s pubSubDomain property is set to true, which means that when dynamic destinations are used, Spring
resolves a dynamic destination’s name to a JMS topic.
Notice that the name of the JMS destination passed to JmsTemplate’s send method is
dynamicTopic, and a JMS topic with the same name is created by MessageCreator’s
createMessage method. As no dynamicTopic JMS destination is configured in the application context XML file,
Spring doesn’t know whether the dynamicTopic JMS destination is a queue or a topic. As JmsTemplate’s pubSubDomain
property is set to true, Spring’s DynamicDestinationResolver resolves dynamicTopic JMS destination name to the dynamicTopic JMS topic created at
runtime by MessageCreator’s createMessage method. If you had not set JmsTemplate’s pubSubDomain
property, Spring’s DynamicDestinationResolver would have tried resolving dynamicTopic JMS destination name to
a dynamicTopic JMS queue.

Let’s now
look at how JmsTemplate simplifies sending Java objects as JMS messages.

JmsTemplate and message
conversion

JmsTemplate defines multiple convertAndSend methods that convert and send a Java object as a JMS message. By
default, JmsTemplate is configured with a SimpleMessageConverter instance (an
implementation of Spring’s MessageConverter interface) that converts Java objects to JMS messages, and vice
versa.

MessageConverter interface defines
the following methods:

·
Object
toMessage(Object object, Session session) –
converts the Java object (represented by object
argument) to a JMS Message
using the supplied JMS Session
(represented by session
argument)

·
Object
fromMessage(Message message) - converts Message
argument to Java object

Spring’s SimpleMessageConverter class provides conversion between String and JMS TextMessage, byte[] and JMS
BytesMessage, Map and JMS MapMessage, and Serializable object and JMS ObjectMessage. If you want to modify the JMS Message created by JmsTemplate’s convertAndSend
method, you can use a MessagePostProcessor implementation to make modifications.

The
following example listing shows a scenario in which a MessagePostProcessor implementation is used to modify the JMS message created by JmsTemplate’s convertAndSend
method:

Example listing 8-9 – JmsTemplate’s convertAndSend method usage

 jmsTemplate.convertAndSend("aDestination",
"Hello, World !!",

 new MessagePostProcessor()
{

 public Message postProcessMessage(Message
message)throws JMSException {

 message.setBooleanProperty("printOnConsole",
true);

 return message;

 }

 });

In the
above example listing, ‘Hello, World !!’ string is passed to the convertAndSend
method. The convertAndSend method creates a JMS TextMessage instance and makes it
available to the MessagePostProcessor implementation to perform any post processing of the message before
it is sent. In the above example listing, MessagePostProcessor’s postProcessMessage method sets a printOnConsole property on the JMS message before it is sent to aDestination.

So far we
have seen how to send JMS messages to JMS destinations using JmsTemplate.
Let’s now look at how to receive JMS messages from JMS destinations using JmsTemplate
and Spring’s message
listener containers.

8-4 Receiving
JMS messages

You can
receive JMS messages synchronously using JmsTemplate and asynchronously using Spring’s message listener containers.

Synchronously receiving JMS messages using JmsTemplate

JmsTemplate defines multiple receive
methods that you can use to synchronously receive JMS messages. It is important to note that call to JmsTemplate’s receive method
causes the calling thread to block until a JMS message is obtained from the JMS
destination. To ensure that the calling thread is not blocked indefinitely, you
must specify an appropriate value for JmsTemplate’s receiveTimeout
property. The receiveTimeout property specifies the amount of time (in milliseconds) the calling
thread should wait before giving up.

JmsTemplate also defines multiple receiveAndConvert methods that automatically convert the received JMS message to a
Java object. By default, JmsTemplate uses SimpleMessageConverter for performing conversions.

Asynchronously receiving JMS messages using message listener containers

You can
use Spring’s message listener containers to asynchronously receive JMS messages. A message listener container takes care of
transaction and resource management aspects, so that you can focus on writing
the message processing logic.

A message
listener container receives messages from JMS destinations and dispatches them to JMS MessageListener implementations for processing. The following example listing shows
how to configure a message listener container using <listener-container> element of Spring’s jms schema:

Example listing 8-10 – applicationContext.xml – message listener container configuration

Project
– ch08-bankapp

Source location -
src/main/resources/META-INF/spring

<beans xmlns:jms="http://www.springframework.org/schema/jms"

 xsi:schemaLocation=".....

 http://www.springframework.org/schema/jms

 http://www.springframework.org/schema/jms/spring-jms-4.0.xsd">

 <jms:listener-container
connection-factory="cachingConnectionFactory"

 destination-type="queue"
transaction-manager="jmsTxManager">

 <jms:listener destination="aQueueDestination"
ref="FixedDepositMessageListener" />

 <jms:listener destination="emailQueueDestination"
ref="emailMessageListener" />

 </jms:listener-container>

 <bean
class="sample.spring.chapter08.bankapp.jms.EmailMessageListener"

 id="emailMessageListener"
/>

 <bean
class="sample.spring.chapter08.bankapp.jms.FixedDepositMessageListener"

 id="FixedDepositMessageListener"
/>

</beans>

In the
above example listing, Spring’s jms schema is included so that its elements are available in the
application context XML file. The <listener-container> element
configures a message listener container for each of the MessageListener implementations defined by <listener> sub-elements. The connection-factory attribute specifies reference to the JMS ConnectionFactory bean that the message listener container uses to obtain connections
to the JMS provider. As we are using Spring’s CachingConnectionFactory in the MyBank
application, the connection-factory attribute refers to the cachingConnectionFactory bean defined
in the application context XML file of MyBank application (refer example
listing 8-2). The destination-type attribute specifies the JMS destination type with which the message
listener container is associated with. The possible values that the
destination-type attribute can accept are: queue, topic and durableTopic.

The transaction-manager attribute of <listener-container> element specifies a PlatformTransactionManager implementation that ensures JMS message reception and message
processing by MessageListener happens within a transaction. In the above example listing, the
value of transaction-manager attribute refers to the JmsTransactionManager implementation
(refer example listing 8-4) configured for the MyBank application. If a MessageListener implementation interacts with other transactional resources also,
consider using Spring’s JtaTransactionManager instead of JmsTransactionManager. In a standalone application, you can use embedded transaction
managers, like Atomikos (http://www.atomikos.com/),
to perform JTA transactions in your application.

NOTE
By default, the <listener-container> element creates an instance of Spring’s DefaultMessageListenerContainer class corresponding to each JMS MessageListener implementation specified by <listener> sub-elements.

Each <listener> element specifies a JMS MessageListener implementation which is asynchronously invoked by the message listener container. The <listener> element’s destination attribute specifies the JMS destination name from which MessageListener implementation receives its messages via the message listener
container. The <listener> element’s ref attribute specifies reference to the MessageListener implementation
responsible for processing the JMS messages received from the destination.
Example listing 8-10 shows that the FixedDepositMessageListener (a MessageListener implementation) is responsible for processing messages received
from aQueueDestination destination, and
the
EmailMessageListener (a MessageListener implementation) is
responsible for processing messages received from emailQueueDestination destination.

MessageListener interface defines an onMessage
method that is asynchronously invoked by the message listener container. The message listener
container passes the JMS Message received from the JMS destination to the onMessage
method. The onMessage method is responsible for processing the received JMS message. The
following example listing shows implementation of MyBank application’s FixedDepositMessageListener that is responsible for retrieving FixedDepositDetails object from the
JMS Message, and then saving the fixed deposit information contained in the FixedDepositDetails object into the database:

Example listing 8-11 – FixedDepositMessageListener class – processing JMS message

Project
– ch08-bankapp

Source location - src/main/java/sample/spring/chapter08/bankapp/jms

package sample.spring.chapter08.bankapp.jms;

import javax.jms.MessageListener;

import javax.jms.ObjectMessage;

import sample.spring.chapter08.bankapp.domain.FixedDepositDetails;

.....

public class FixedDepositMessageListener
implements MessageListener
{

 @Autowired

 @Qualifier(value = "FixedDepositDao")

 private FixedDepositDao myFixedDepositDao;

 @Autowired

 private BankAccountDao bankAccountDao;

 @Transactional

 public int
createFixedDeposit(FixedDepositDetails fixedDepositDetails) {

 bankAccountDao.subtractFromAccount(fixedDepositDetails.getBankAccountId(),

 fixedDepositDetails.getFixedDepositAmount());

 return myFixedDepositDao.createFixedDeposit(fixedDepositDetails);

 }

 @Override

 public void onMessage(Message
message) {

 ObjectMessage objectMessage =
(ObjectMessage) message;

 FixedDepositDetails fixedDepositDetails
= null;

 try {

 fixedDepositDetails =
(FixedDepositDetails) objectMessage.getObject();

 } catch (JMSException e) {

 e.printStackTrace();

 }

 if (fixedDepositDetails != null) {

 createFixedDeposit(fixedDepositDetails);

 }

 }

}

In the
above example listing, FixedDepositMessageListener’s onMessage method obtains the FixedDepositDetails object from the JMS message and saves the fixed deposit details
into the database. FixedDepositMessageListener’s createFixedDeposit method is responsible for saving the fixed deposit information into
the database. As the createFixedDeposit method is annotated with @Transactional annotation, it is
executed under the transaction managed by DataSourceTransactionManager (refer
the applicationContext.xml file of ch08-bankapp project). The message listener container receives the JMS message
and executes FixedDepositMessageListener’s onMessage method under the transaction managed by JmsTransactionManager (refer example listing 8-10).

As onMessage and createFixedDeposit methods execute under different transaction managers, the database
update is not rolled back if the JMS transaction fails for some reason, and the
JMS message is not redelivered to the MessageListener if the database update fails for some reason. If you want JMS
message reception (and processing) and the database update to be part of the
same transaction, you should use JTA transactions.

In this
section, we looked at how to send and receive JMS messages using Spring. Let’s
now look at how Spring simplifies sending emails.

8-5 Sending
emails

Spring
simplifies sending emails from an application by providing a layer of
abstraction on top of JavaMail API. Spring takes care of resource management
and exception handling aspects, so that you can focus on writing the necessary
logic required to prepare the email message.

To send
emails using Spring, you first need to configure Spring’s JavaMailSenderImpl class in your
application context XML file. The JavaMailSenderImpl class acts as a
wrapper around JavaMail API. The following example listing shows how JavaMailSenderImpl class is configured in MyBank application:

Example listing 8-12 – applicationContext.xml – JavaMailSenderImpl class
configuration

Project
– ch08-bankapp

Source location - src/main/resources/META-INF/spring

 <bean id="mailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">

 <property name="host"
value="${email.host}" />

 <property name="protocol"
value="${email.protocol}" />

 <property name="javaMailProperties">

 <props>

 <prop key="mail.smtp.auth">true</prop>

 <prop key="mail.smtp.starttls.enable">true</prop>

 </props>

 </property>

 </bean>

JavaMailSenderImpl class defines
properties, like host, port, protocol, and so on, that provide information about the mail server. The javaMailProperties property specifies configuration information that is used by JavaMailSenderImpl instance for creating a JavaMail Session object. The mail.smtp.auth
property value is set to true, which means that SMTP (Simple Mail Transfer Protocol) is used for
authentication with the mail server. The mail.smtp.starttls.enable property
value is set to true, which means TLS-protected connection is used for authenticating
with the mail server.

Example
listing 8-12 shows that the values of some of the properties of
JavaMailSenderImpl class are specified using property placeholders. For
instance, host property value is specified as ${email.host} and protocol
property value as ${email.protocol}. The value of these property placeholders comes from email.properties file located in
src/main/resources/META-INF/spring directory. The following example listing
shows the contents of email.properties file:

Example listing 8-13 – email.properties

Project
– ch08-bankapp

Source location -
src/main/resources/META-INF/spring

email.host=smtp.gmail.com

email.port=587

email.protocol=smtp

email.username=<enter-email-id>

email.password=<enter-email-password>

The above
example listing shows that email.properties file contains mail server information, communication protocol
information, and the mail account to use for connecting to the mail server. The
properties specified in the email.properties file are used to configure the JavaMailSenderImpl instance (refer
example listing 8-12).

NOTE
The classes that provide abstraction on top of JavaMail API are defined in spring-context-support JAR file. So, to use Spring’s support for
sending emails, you must define that your application depends on spring-context-support JAR file.

Spring’s SimpleMailMessage class represents a simple email message. SimpleMailMessage defines properties, like to, cc, subject, text, and so
on, that you can set to construct the email message that you want to send from
your application.

The
following example listing shows the MyBank’s application context XML file that
configures two SimpleMailMessage instances corresponding to the two email messages that we send from
the MyBank application:

Example listing 8-14 – applicationContext.xml – SimpleMailMessage configuration

Project
– ch08-bankapp

Source location -
src/main/resources/META-INF/spring

 <bean
class="org.springframework.mail.SimpleMailMessage" id="requestReceivedTemplate">

 <property name="subject"
value="${email.subject.request.received}" />

 <property name="text"
value="${email.text.request.received}" />

 </bean>

 <bean
class="org.springframework.mail.SimpleMailMessage" id="requestProcessedTemplate">

 <property name="subject"
value="${email.subject.request.processed}" />

 <property name="text"
value="${email.text.request.processed}" />

 </bean>

In the
above example listing, the requestReceivedTemplate bean represents the email message that is sent to the customer
informing that the request for opening a fixed deposit has been received, and requestProcessedTemplate bean
represents the email message that is sent to the customer informing that the
request for opening the fixed deposit has been successfully processed. SimpleMailMessage’s subject property specifies the subject line of the email, and text property
specifies the body of the email. The values for these properties are defined in
the emailtemplate.properties file, as shown in the following example listing:

Example listing 8-15 – emailtemplate.properties

Project
– ch08-bankapp

Source location - src/main/resources/META-INF/spring

email.subject.request.received=Fixed deposit
request received

email.text.request.received=Your request for
creating the fixed deposit has been received

email.subject.request.processed=Fixed deposit
request processed

email.text.request.processed=Your request
for creating the fixed deposit has been processed

We have so
far seen how to configure JavaMailSenderImpl and SimpleMailMessage classes in the application context XML file. Let’s now look at how
to send email messages.

The
following example listing shows the MyBank application’s EmailMessageListener class (a JMS MessageListener implementation) that retrieves customer’s email address from the JMS
message and sends an email to the customer informing that the request for
opening a fixed deposit has been received:

Example listing 8-16 – EmailMessageListener
class – sending emails using MailSender

Project
– ch08-bankapp

Source location -
src/main/java/sample/spring/chapter08/bankapp/jms

package sample.spring.chapter08.bankapp.jms;

import org.springframework.mail.MailSender;

import
org.springframework.mail.SimpleMailMessage;

.....

public class EmailMessageListener implements
MessageListener {

 @Autowired

 private transient MailSender
mailSender;

 @Autowired

@Qualifier("requestReceivedTemplate")

 private transient SimpleMailMessage
simpleMailMessage;

 public void sendEmail() {

 mailSender.send(simpleMailMessage);

 }

 public void onMessage(Message message) {

 TextMessage textMessage =
(TextMessage) message;

 try {

 simpleMailMessage.setTo(textMessage.getText());

 } catch (Exception e) {

 e.printStackTrace();

 }

 sendEmail();

 }

}

The above
example listing shows that the MailSender’s send method sends the email message represented by the SimpleMailMessage instance. As JavaMailSenderImpl class implements Spring’s MailSender interface, the JavaMailSenderImpl instance (refer example listing 8-12) is autowired into the EmailMessageListener instance. SimpleMailMessage instance named requestReceivedTemplate (refer example listing 8-14) is also autowired into the EmailMessageListener instance. As SimpleMailMessage’s to property identifies the email recipient, the onMessage
method retrieves the email id of the customer from the JMS message and sets it
as the value of to property.

Spring’s MailSender
interface represents a generic interface that is independent of JavaMail API,
and is suited for sending simple email messages. Spring’s JavaMailSender
interface (a sub-interface of MailSender) is dependent on JavaMail API, and defines the functionality for
sending MIME messages. A MIME message is used if you want to send emails
containing inline images, attachments, and so on. A MIME message is represented
by a MimeMessage class in JavaMail API. Spring provides a MimeMessageHelper class and a MimeMessagePreparator callback interface that you can use to create and populate a MimeMessage instance.

The
following example listing shows the MyBank application’s FixedDepositProcessorJob class that subtracts the fixed deposit amount from the customer’s
bank account and sends an email to the customer informing that the request for
opening the fixed deposit has been processed:

Example listing 8-17 – FixedDepositProcessorJob class – JavaMailSender usage

Project
– ch08-bankapp

Source location -
src/main/java/sample/spring/chapter08/bankapp/job

package sample.spring.chapter08.bankapp.job;

import javax.mail.internet.MimeMessage;

import
org.springframework.mail.javamail.JavaMailSender;

public class FixedDepositProcessorJob {

 @Autowired

 private transient JavaMailSender
mailSender;

 @Autowired

@Qualifier("requestProcessedTemplate")

 private transient SimpleMailMessage
simpleMailMessage;

 private List<FixedDepositDetails>
getInactiveFixedDeposits() {

 return myFixedDepositDao.getInactiveFixedDeposits();

 }

 public void sendEmail() throws
AddressException, MessagingException {

 List<FixedDepositDetails>
inactiveFixedDeposits = getInactiveFixedDeposits();

 for (FixedDepositDetails fixedDeposit
: inactiveFixedDeposits) {

 MimeMessage mimeMessage =
mailSender.createMimeMessage();

 MimeMessageHelper
mimeMessageHelper = new MimeMessageHelper(mimeMessage);

 mimeMessageHelper.setTo(fixedDeposit.getEmail());

 mimeMessageHelper.setSubject(simpleMailMessage.getSubject());

mimeMessageHelper.setText(simpleMailMessage.getText());

 mailSender.send(mimeMessage);

 }

 myFixedDepositDao.setFixedDepositsAsActive(inactiveFixedDeposits);

 }

}

The above
example listing shows that JavaMailSender’s send method is used to send a MIME message. As JavaMailSenderImpl instance implements Spring’s JavaMailSender interface, JavaMailSenderImpl instance (refer example listing 8-12) is autowired into the FixedDepositProcessorJob instance. SimpleMailMessage instance named requestProcessedTemplate (refer example listing 8-14) is also autowired into the FixedDepositProcessorJob instance. The mailSender instance variable is defined of type JavaMailSender (and not MailSender)
because the FixedDepositProcessorJob creates and sends MIME messages. FixedDepositProcessorJob’s sendEmail
method creates an instance of a MimeMessage using JavaMailSender’s createMimeMessage method. Spring’s MimeMessageHelper is then used to populate the MimeMessage instance with to, subject and text
properties.

The
following example listing shows how the FixedDepositProcessorJob’s sendEmail
method can be written using Spring’s MimeMessagePreparator callback interface instead of MimeMessageHelper:

Example listing 8-18 – MimeMessagePreparator usage

import javax.mail.Message;

import javax.mail.internet.InternetAddress;

import org.springframework.mail.javamail.MimeMessagePreparator;

public class FixedDepositProcessorJob {

 public void sendEmail_() throws
AddressException, MessagingException {

 List<FixedDepositDetails>
inactiveFixedDeposits = getInactiveFixedDeposits();

 for (final FixedDepositDetails fixedDeposit
: inactiveFixedDeposits) {

 mailSender.send(new
MimeMessagePreparator() {

 @Override

 public void
prepare(MimeMessage mimeMessage) throws Exception {

 mimeMessage.setRecipient(Message.RecipientType.TO,

 new
InternetAddress(fixedDeposit.getEmail()));

mimeMessage.setSubject(simpleMailMessage.getText());

 mimeMessage.setText(simpleMailMessage.getText());

 }

 });

 }

 myFixedDepositDao.setFixedDepositsAsActive(inactiveFixedDeposits);

 }

}

The above
example shows that a MimeMessagePreparator instance is passed to JavaMailSender’s send method to
prepare a MimeMessage instance for sending. MimeMessagePreparator’s prepare method
provides a new instance of MimeMessage that you need to populate. In the above example listing, notice
that setting the MimeMessage’s recipient property requires you to deal with lower-level JavaMail API. In
example listing 8-17, MimeMessageHelper’s setTo method accepted an email id of the recipient as a string argument
to set the MimeMessage’s recipient property. For this reason, you should consider using MimeMessageHelper to populate the MimeMessage instance passed to the prepare method of MimeMessagePreparator.

Let’s now
look at how you can use Spring to execute a task asynchronously, and to
schedule execution of a task in the future.

8-6 Task scheduling and asynchronous execution

You can
asynchronously execute java.lang.Runnable tasks using Spring’s TaskExecutor, and you can schedule
execution of java.lang.Runnable tasks using Spring’s TaskScheduler. Instead of directly using TaskExecutor and TaskScheduler, you can use Spring’s @Async and @Scheduled
annotations to execute a method asynchronously and to schedule execution of a
method, respectively.

Let’s
first look at TaskExecutor and TaskScheduler interfaces.

TaskExecutor interface

Java 5
introduced the concept of executors for executing java.lang.Runnable tasks. An executor implements java.util.concurrent.Executor
interface that defines a single method, execute(Runnable runnable). Spring’s TaskExecutor
extends java.util.concurrent.Executor interface. Spring also provides a couple of TaskExecutor
implementations that you can choose from depending upon your application’s
requirements. Depending upon the TaskExecutor implementation you
choose, the Runnable task may be executed synchronously or asynchronously, using a
thread pool or CommonJ, and so on. Some of the TaskExecutor implementations provided
by Spring are: ThreadPoolTaskExecutor (asynchronously executes tasks using a thread from a thread pool), SyncTaskExecutor (executes tasks synchronously) and SimpleAsyncTaskExecutor
(asynchronously executes each task in a new thread).

ThreadPoolTaskExecutor is the most
commonly used TaskExecutor implementation that uses Java 5’s ThreadPoolExecutor to execute tasks.
The following example listing shows how to configure a ThreadPoolTaskExecutor instance in the application context XML file:

Example listing 8-19 –ThreadPoolTaskExecutor
configuration

 <bean id="myTaskExecutor"

 class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">

 <property name="corePoolSize"
value="5" />

 <property name="maxPoolSize"
value="10" />

 <property name="queueCapacity"
value="15" />

 <property name="rejectedExecutionHandler"
ref="abortPolicy"/>

 </bean>

 <bean id="abortPolicy"
class="java.util.concurrent.ThreadPoolExecutor.AbortPolicy"/>

The corePoolSize
property specifies the minimum number of threads in the thread pool. The maxPoolSize
property specifies the maximum number of threads that can be accommodated in
the thread pool. The queueCapacity property specifies the maximum number of tasks that can wait in the
queue if all the threads in the thread pool are busy executing tasks. The rejectedExecutionHandler property specifies a handler for tasks rejected by the ThreadPoolTaskExecutor. A task is rejected by ThreadPoolTaskExecutor if the queue
is full and there is no thread available in the thread pool for executing the
submitted task. The rejectedExecutionHandler property refers to an instance of java.util.concurrent.RejectedExecutionHandler object.

In example
listing 8-19, the rejectedExecutionHandler property refers to java.util.concurrent.ThreadPoolExecutor.AbortPolicy instance that always throws RejectedExecutionException. The other
possible handlers for rejected tasks are: java.util.concurrent.ThreadPoolExecutor.CallerRunsPolicy (the rejected task is executed in caller’s thread),
java.util.concurrent.ThreadPoolExecutor.DiscardOldestPolicy (the handler discards the oldest task from the queue and retries
executing the rejected task), and java.util.concurrent.ThreadPoolExecutor.DiscardPolicy (the handler simply discards the rejected task).

The <executor> element of Spring’s task schema simplifies configuring a ThreadPoolTaskExecutor instance, as
shown in the following example listing:

Example listing 8-20 –ThreadPoolTaskExecutor configuration using Spring’s task schema

<beans
xmlns:task="http://www.springframework.org/schema/task"

xsi:schemaLocation=".....http://www.springframework.org/schema/task

http://www.springframework.org/schema/task/spring-task-4.0.xsd">

 <task:executor id="
myTaskExecutor" pool-size="5-10"

 queue-capacity="15"
rejection-policy="ABORT" />

</beans>

In the
above example listing, the <executor> element configures a ThreadPoolTaskExecutor instance. The pool-size
attribute specifies the core pool size and the maximum pool size. In the above
example listing, 5 is the core pool size and 10 is the maximum pool size. The queue-capacity
attribute sets the queueCapacity property, and rejection-policy attribute specifies the handler for rejected tasks. The possible
values of rejection-policy attribute are ABORT, CALLER_RUNS, DISCARD_OLDEST,
and DISCARD.

Once you
have configured a ThreadPoolTaskExecutor instance by explicitly defining it as a Spring bean (refer example
listing 8-19) or by using Spring’s task schema (refer example listing 8-20),
you can inject the ThreadPoolTaskExecutor instance into beans that want to asynchronously execute java.lang.Runnable tasks, as shown in the following example listing:

Example listing 8-21 –Executing
tasks using ThreadPoolTaskExecutor

import
org.springframework.beans.factory.annotation.Autowired;

import
org.springframework.core.task.TaskExecutor;

@Component

public class Sample {

 @Autowired

 private TaskExecutor taskExecutor;

 public void executeTask(Runnable task) {

 taskExecutor.execute(task);

 }

}

In the
above example listing, an instance of ThreadPoolTaskExecutor is autowired
into the Sample class, and is later used by Sample’s executeTask
method to execute a java.lang.Runnable task.

TaskExecutor executes a java.lang.Runnable task immediately after it is submitted, and the task is executed
only once. If you want to schedule execution of a java.lang.Runnable task, and you want the task to be executed periodically, you should
use a TaskScheduler implementation.

TaskScheduler interface

Spring’s TaskScheduler
interface provides the abstraction to schedule execution of java.lang.Runnable tasks. Spring’s Trigger interface abstracts the time when a java.lang.Runnable task is executed.
You associate a TaskScheduler instance with a Trigger instance to schedule execution of java.lang.Runnable tasks. PeriodicTrigger (an implementation of Trigger interface) is used if you
want periodic execution of tasks. CronTrigger (another implementation of Trigger interface) accepts a cron expression that indicates the date/time when the task is executed.

ThreadPoolTaskScheduler is one of the
most commonly used implementations of TaskScheduler that internally uses
Java 5’s ScheduledThreadPoolExecutor (an implementation of Java 5’s ScheduledExecutorService interface)
to schedule task execution. You can configure a ThreadPoolTaskScheduler
implementation and associate it with a Trigger implementation to schedule
task execution. The following example listing shows how ThreadPoolTaskScheduler is configured and used:

Example listing 8-22 –ThreadPoolTaskExecutor configuration and usage

------------ ThreadPoolTaskScheduler configuration ---------------------

 <bean id="myScheduler"

class="org.springframework.scheduling.concurrent.ThreadPoolTaskScheduler">

 <property name="poolSize"
value="5"/>

 </bean>

--------------- ThreadPoolTaskScheduler usage ---------------------

import
org.springframework.scheduling.TaskScheduler;

import
org.springframework.scheduling.support.PeriodicTrigger;

@Component

public class Sample {

 @Autowired

 @Qualifier("myScheduler")

 private TaskScheduler taskScheduler;

 public void executeTask(Runnable task) {

 taskScheduler.schedule(task, new
PeriodicTrigger(5000));

 }

}

In the
above example listing, ThreadPoolTaskScheduler’s poolSize property specifies the number of threads in the thread pool. To
schedule a task for execution, ThreadPoolTaskScheduler’s schedule method is called, passing the java.lang.Runnable task and a Trigger
instance. In the above example listing, PeriodicTrigger instance is passed to
ThreadPoolTaskScheduler’s schedule method. The argument to the PeriodicTrigger constructor specifies
the time interval (in milliseconds) between task executions.

The <scheduler> element of Spring’s task schema simplifies configuring a ThreadPoolTaskScheduler instance. The
ThreadPoolTaskScheduler instance created by the <scheduler> element can be used
by the <scheduled-tasks> element of Spring’s task schema to schedule execution of bean methods. The following example
listing shows how <scheduler> and <scheduled-tasks> elements are used by MyBank application to execute FixedDepositProcessorJob’s sendEmail method every 5 seconds:

Example listing 8-23 –<scheduler> and
<scheduled-tasks> elements

Project
– ch08-bankapp

Source location -
src/main/java/sample/spring/chapter08/bankapp/job

 <task:scheduler
id="emailScheduler" pool-size="10" />

 <task:scheduled-tasks scheduler="emailScheduler">

 <task:scheduled ref="FixedDepositProcessorJob"
method="sendEmail" fixed-rate="5000" />

 </task:scheduled-tasks>

 <bean id="FixedDepositProcessorJob"

class="sample.spring.chapter08.bankapp.job.FixedDepositProcessorJob"
/>

In the above
example listing, the <scheduler> element configures a ThreadPoolTaskScheduler instance. The
id attribute of the <scheduler> element specifies the name with which the ThreadPoolTaskScheduler instance is accessed by other beans in the Spring container. The <scheduled-tasks> element’s scheduler attribute specifies reference to the ThreadPoolTaskScheduler instance that
is used for scheduling execution of bean methods. In the above example listing,
the ThreadPoolTaskScheduler instance created by the <scheduler> element is
referenced by the <scheduled-tasks> element’s scheduled attribute.

The <scheduled-tasks> element contains one or more <scheduled> elements. The <scheduled> element contains information about the bean method to be executed
and the trigger for the bean method execution. The ref attribute
specifies reference to a Spring bean, the method attribute specifies a method
of the bean referenced by the ref attribute, and the fixed-rate attribute (an interval-based trigger) specifies the time interval
between successive method executions. In example listing 8-23, the <scheduled> element specifies that FixedDepositProcessorJob’s sendEmail method is executed every 5 seconds.

Instead of
using fixed-rate attribute of the <scheduled> element, you can use fixed-delay (an interval-based
trigger) or cron (a cron-based trigger) or trigger (reference to a Trigger
implementation) attribute, to specify a trigger for the bean method execution.

Let’s now
look at Spring’s @Async and @Scheduled annotations.

@Async and @Scheduled annotations

If you
annotate a bean method with Spring’s @Async annotation, it is
asynchronously executed by Spring. If you annotate a bean method with Spring’s @Scheduled
annotation, it is scheduled for execution by Spring.

Use of @Async and @Scheduled
annotations is enabled by <annotation-driven> element of Spring’s task schema, as shown in the following example listing:

Example listing 8-24 – Enabling @Async and @Scheduled
annotations

 <task:annotation-driven
executor="anExecutor" scheduler="aScheduler"/>

 <task:executor id="anExecutor"/>

 <task:scheduled-tasks
scheduler="aScheduler">

 <task:scheduled
ref="sampleJob" method="doSomething" fixed-rate="5000"
/>

 </task:scheduled-tasks>

The <annotation-driven> element’s executor attribute specifies reference to a Spring’s TaskExecutor
(or Java 5’s Executor) instance that is used for executing @Async annotated methods. The scheduler
attribute specifies reference to a Spring’s TaskScheduler (or Java 5’s ScheduledExecutorService) instance that is used for executing @Scheduled
annotated methods.

Let’s now
look at @Async annotation in detail.

@Async annotation

The
following example listing highlights some of the important points that you need
to know when using @Async annotation:

Example listing 8-25 –@Async annotation usage

import java.util.concurrent.Future;

import org.springframework.scheduling.annotation.Async;

import
org.springframework.scheduling.annotation.AsyncResult;

import
org.springframework.stereotype.Component;

@Component

public class Sample {

 @Async

 public void doA() { }

 @Async(value="someExecutor")

 public void doB(String str) { }

 @Async

 public Future<String>
doC() {

 return new AsyncResult<String>("Hello");

 }

}

@Async annotation’s value
attribute specifies the Spring’s TaskExecutor (or Java 5’s Executor)
instance to use for asynchronously executing the method. As the @Async annotation on the doA method doesn’t specify the executor to use, Spring’s SimpleAsyncTaskExector is used for asynchronously executing the doA method. @Async
annotation on the doB method specifies the value attribute’s value as someExecutor,
which means the bean named someExecutor (of type TaskExecutor or Java 5’s Executor) is used for asynchronously executing the doB method. @Async
annotated methods can accept arguments, like the doB method in the above example
listing. @Async annotated methods can either return void (like the doA and doB methods)
or a Future instance (like the doC method). To return a Future instance, you’ll need to wrap
the value that you want to return into an AsyncResult object, and return the AsyncResult
object.

Let’s now
look at @Scheduled annotation in detail.

@Scheduled annotation

The
following example listing highlights some of the important points that you need
to know when using @Scheduled annotation:

Example listing 8-26 –@Scheduled annotation usage

import
org.springframework.scheduling.annotation.Scheduled;

@Component

public class Sample {

 @Scheduled(cron="0 0 9-17 * *
MON-FRI")

 public void doA() { }

 @Scheduled(fixedRate = 5000)

 public void doB() { }

}

A method
annotated with @Scheduled annotation must return void and must
not be defined to accept any arguments. You must specify cron, fixedRate or fixedDelay attribute of @Scheduled annotation.

It is
important to note that if the @Async (or @Scheduled) annotation is specified on one or more methods of a class, you are
required to include CGLIB JAR file in your application’s classpath. If the @Async (or @Scheduled)
annotation is specified only on the methods defined in an interface, you don’t
need to include CGLIB JAR file. Starting with Spring 3.2,
the CGLIB classes are packaged within the spring-core JAR file itself;
therefore, you don’t need to explicitly specify that your project is dependent
on CGLIB JAR file.

NOTE
If you want to use the Quartz Scheduler (http://quartz-scheduler.org/) in your Spring application, you can use the integration
classes provided by Spring that simplify using the Quartz Scheduler.

Spring
simplifies using caching in an application by providing an abstraction on top
of java.util.concurrent.ConcurrentMap and Ehcache (http://ehcache.org/).

8-7 Caching

If you
want to use caching in your application, you can consider using Spring’s cache
abstraction. Spring’s cache abstraction shields developers from directly
dealing with the underlying caching implementation’s API. Starting with Spring
3.2, cache abstraction is available out-of-the-box for java.util.concurrent.ConcurrentMap, Ehcache and for caching solutions that implement JSR 107 – Java Temporary
Caching API (referred to as JCACHE).

NOTE
If you are using a caching solution which is not currently supported by
Spring’s cache abstraction, you have the option to either directly use the API
of the caching solution or create adapters that map Spring’s cache abstraction
to the caching solution.

Spring
provides a CacheManager interface that defines methods for managing a collection of Cache
instances. A CacheManager instance acts as a wrapper around the cache manager provided by the
underlying caching solution. For instance, EhCacheCacheManager is a wrapper
around Ehcache’s net.sf.ehcache.CacheManager, JCacheCacheManager is a wrapper around JSR 107 provider’s javax.cache.CacheManager implementation, and so on. A Cache instance is a wrapper around
the underlying cache, and it provides methods for interacting with the
underlying cache. For instance, EhCacheCache (a Cache implementation) is a wrapper around net.sf.ehcache.Ehcache, and JCacheCache (a Cache implementation) is a wrapper around JSR 107 provider’s javax.cache.Cache instance.

Spring
also provides a
ConcurrentMapCacheManager that you can use if you want to use java.util.concurrent.ConcurrentMap as
the underlying cache. The Cache instance managed by ConcurrentMapCacheManager is a
ConcurrentMapCache. The following diagram
summarizes relationship between CacheManager and Cache interfaces provided by Spring’s caching abstraction:

NOTE
If you want to use Spring’s caching abstraction for a caching solution that is
not currently supported by Spring’s caching abstraction, all you need to do is
to provide CacheManager and Cache implementations for the caching solution.

Figure 8-3 A CacheManager
implementation acts as wrapper around the cache manager of the underlying
caching solution, and a Cache implementation provides operations to interact with the underlying
cache.

The above
figure shows that CacheManager manages Cache instances. EhCacheCacheManager manages EhCacheCache instances (underlying cache store is Ehcache), JCacheCacheManager manages JCacheCache instances (underlying cache store is a caching solution that
implements JSR 107), ConcurrentMapCacheManager manages ConcurrentMapCache instances (underlying cache store is java.util.concurrent.ConcurrentMap),
and so on.

Figure 8-3
shows a SimpleCacheManager class that implements CacheManager interface. SimpleCacheManager is useful for simple caching scenarios and for testing purposes.
For instance, if you want to use java.util.concurrent.ConcurrentMap as
the underlying cache store, you can use SimpleCacheManager, instead of
ConcurrentMapCacheManager, to manage the cache.

Let’s now
look at how a CacheManager is configured in the application context XML file.

Configuring a
CacheManager

In MyBank
application, a collection of java.util.concurrent.ConcurrentMap instances are used as the underlying cache store; therefore, SimpleCacheManager is used to manage the cache.

The
following example listing shows how a SimpleCacheManager instance is
configured in MyBank application:

Example listing 8-27 – SimpleCacheManager configuration

Project
– ch08-bankapp

Source location - src/main/resources/META-INF/spring/

 <bean id="myCacheManager"

class="org.springframework.cache.support.SimpleCacheManager">

 <property
name="caches">

 <set>

 <bean

 class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean">

 <property
name="name" value="FixedDepositList" />

 </bean>

 <bean

 class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean">

 <property
name="name" value="FixedDeposit" />

 </bean>

 </set>

 </property>

 </bean>

SimpleCacheManager’s caches
property specifies a collection of caches managed by the SimpleCacheManager instance. ConcurrentMapCacheFactoryBean is a FactoryBean implementation that simplifies configuring a ConcurrentMapCache instance - a Cache instance that uses a java.util.concurrent.ConcurrentHashMap instance (an implementation of java.util.concurrent.ConcurrentMap
interface) as the underlying cache store. ConcurrentMapCacheFactoryBean’s name property
specifies a name for the cache. In the above example listing, the FixedDepositList and FixedDeposit caches are managed by the SimpleCacheManager instance.

Let’s now
look at how to use Spring’s caching annotations in applications.

Caching
annotations - @Cacheable, @CacheEvict and @CachePut

After you
have configured an appropriate CacheManager for your application, you need to choose how you want to use
Spring’s cache abstraction. You can use Spring’s cache abstraction either by
using caching annotations (like @Cacheable, @CacheEvict and @CachePut) or by using Spring’s cache schema. As using Spring’s cache schema
for caching results in a verbose application context XML file, we’ll be only
looking at using caching annotations for declarative caching.

To use
caching annotations, you need to configure <annotation-driven> element of Spring’s
cache schema, as shown here for the MyBank application:

Example listing 8-28 – Enable caching annotations using <annotation-driven>

Project
– ch08-bankapp

Source location - src/main/resources/META-INF/spring/

<beansxmlns:cache="http://www.springframework.org/schema/cache"

 xsi:schemaLocation=".....

http://www.springframework.org/schema/cache

http://www.springframework.org/schema/cache/spring-cache.xsd">

 <cache:annotation-driven
cache-manager="myCacheManager"/>

</beans>

In the
above example listing, Spring’s cache schema is included so that its elements are accessible in the
application context XML file. The <annotation-driven> element’s cache-manager attribute refers to the CacheManager bean that is used for
managing the cache. You don’t need to specify the cache-manager
attribute if the CacheManager bean is named cacheManager.

Now, that
we have enabled caching annotations, let’s look at different caching
annotations.

@Cacheable

@Cacheable annotation on a method
indicates that the value returned by the method is cached. Spring’s DefaultKeyGenerator class is used by default to generate the key with which the
method’s return value is stored in the cache. DefaultKeyGenerator uses method
signature and method arguments to compute the key. You can use a custom key
generator by providing an implementation of Spring’s KeyGenerator
interface, and specifying it as the value of key-generator attribute of <annotation-driven> element.

The
following example listing shows the usage of @Cacheable annotation to cache the
value returned by FixedDepositService’s findFixedDepositsByBankAccount
method in the MyBank application:

Example listing 8-29 – @Cacheable annotation

Project
– ch08-bankapp

Source location - src/main/java/sample/spring/chapter08/bankapp/service

package sample.spring.chapter08.bankapp.service;

import
org.springframework.cache.annotation.Cacheable;

.....

@Service(value = "FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @Cacheable(value = {
"FixedDepositList" })

 public List<FixedDepositDetails>
findFixedDepositsByBankAccount(int bankAccountId) {

 logger.info("findFixedDepositsByBankAccount
method invoked");

 return
myFixedDepositDao.findFixedDepositsByBankAccount(bankAccountId);

 }

}

@Cacheable annotation’s value
attribute specifies the cache region into which the returned value is cached.
In listing 8-27, we created a cache region named FixedDepositList for the MyBank
application. In the above example listing, the @Cacheable annotation specifies that
the value returned by the findFixedDepositsByBankAccount method is stored in the FixedDepositList cache. It is
important to note that @Cacheable annotated method is not invoked if the same set of argument values
are passed to the method. But, @Cacheable annotated method will be invoked if you pass a different value for
at least one of the arguments.

@CacheEvict

If you
want to evict data from the cache when a method is called, annotate the method
with the @CacheEvict annotation. In the MyBank application, when a new fixed deposit is
created, the fixed deposit details cached by FixedDepositServiceImpl’s
findFixedDepositsByBankAccount method must be evicted from the cache. This ensures that when the next time findFixedDepositsByBankAccount method is invoked, the newly created fixed deposit is also fetched
from the database. The following example listing shows usage of @CacheEvict
annotation:

Example listing 8-30 – @CacheEvict annotation

Project
– ch08-bankapp

Source location - src/main/java/sample/spring/chapter08/bankapp/service

package sample.spring.chapter08.bankapp.service;

import org.springframework.cache.annotation.CacheEvict;

.....

@Service(value = "FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @Transactional("jmsTxManager")

 @CacheEvict(value = {
"FixedDepositList" }, allEntries=true, beforeInvocation = true)

 public void createFixedDeposit(final FixedDepositDetails
fixedDepositDetails) throws Exception { }

}

In the
above example listing, the @CacheEvict annotation on the createFixedDeposit method instructs Spring to remove all the cached entries from the
cache region named FixedDepositList. The value attribute specifies the cache region from which to evict the cached
item, and allEntries attribute specifies whether or not all entries from the specified
cache region are evicted. If you want to evict a particular cached item, use
the key attribute to specify the key with which the item is cached. You can
also specify conditional eviction of items by using the condition
attribute. The condition and key attributes support specifying values using SpEL (refer section 6-8
of chapter 6 for more details), making it possible to perform sophisticated
cache evictions. The beforeInvocation attribute specifies whether the cache eviction is performed before or after the method execution. As the value of beforeInvocation attribute is set to true, cache is evicted before the createFixedDeposit method is invoked.

@CachePut

Spring
also provides a @CachePut annotation that indicates that a method is always invoked, and the value returned by the method is put into the
cache. @CachePut annotation is different from the @Cacheable annotation in the sense
that @Cacheable annotation instructs Spring to skip the method invocation if the
method is called with the same set of argument values.

The
following example listing shows usage of @CachePut annotation by FixedDepositServiceImpl class of MyBank application:

Example listing 8-31 – @CachePut annotation

Project
– ch08-bankapp

Source location - src/main/java/sample/spring/chapter08/bankapp/service

package sample.spring.chapter08.bankapp.service;

import
org.springframework.cache.annotation.CachePut;

import
org.springframework.cache.annotation.Cacheable;

.....

@Service(value = "FixedDepositService")

public class FixedDepositServiceImpl
implements FixedDepositService {

 @CachePut(value={"FixedDeposit"},
key="#FixedDepositId")

 public FixedDepositDetails getFixedDeposit(int
FixedDepositId) {

 logger.info("getFixedDeposit
method invoked with FixedDepositId " + FixedDepositId);

 return myFixedDepositDao.getFixedDeposit(FixedDepositId);

 }

 @Cacheable(value={"FixedDeposit"},
key="#FixedDepositId")

 public FixedDepositDetails getFixedDepositFromCache(int
FixedDepositId) {

 logger.info("getFixedDepositFromCache
method invoked with FixedDepositId "

 + FixedDepositId);

 throw new
RuntimeException("This method throws exception because "

 + "FixedDepositDetails
object must come from the cache");

 }

}

In the
above example listing, the getFixedDeposit method is annotated with @CachePut annotation, which means
that the getFixedDeposit method is always invoked, and the returned FixedDepositDetails object is stored into the cache named FixedDeposit.
The value attribute specifies the name of the cache into which the FixedDepositDetails object is stored. The key attribute specifies the key to be
used for storing the returned FixedDepositDetails object into the cache. As you can see, key attribute
makes use of SpEL to specify the key. The #FixedDepositId value of key attribute
refers to the FixedDepositId argument passed to the getFixedDeposit method. To summarize,
the FixedDepositDetails object returned by the getFixedDeposit method is stored in
the cache named FixedDeposit, and the value of FixedDepositId method argument is used as the key.

In example
listing 8-31, FixedDepositServiceImpl’s getFixedDepositFromCache method retrieves the FixedDepositDetails object from the
cache based on the key attribute value specified by the @Cacheable annotation. Notice that
the body of the getFixedDepositFromCache method does nothing but throw a RuntimeException. The key attribute
value refers to the FixedDepositId argument passed to the getFixedDepositFromCache method. If
the FixedDepositDetails object is not found in the cache, the getFixedDepositFromCache method is invoked, which will result in RuntimeException.

Let’s now
look at what happens when you run the MyBank application of ch08-bankapp
project.

8-8 Running
the MyBank application

BankApp class of MyBank application
defines the main method of the application. The main method accesses methods of FixedDepositService and BankAccountService instances to demonstrate different features that we discussed in
this chapter.

The
following example listing shows the MyBank application’s BankApp class:

Example listing 8-32 – BankApp class

Project
– ch08-bankapp

Source location - src/main/java/sample/spring/chapter08/bankapp

package sample.spring.chapter08.bankapp;

import
org.springframework.context.ApplicationContext;

import
org.springframework.context.support.ClassPathXmlApplicationContext;

public class BankApp {

 public static void main(String args[])
throws Exception {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

 "classpath:META-INF/spring/applicationContext.xml");

 BankAccountService bankAccountService
= context.getBean(BankAccountService.class);

 BankAccountDetails bankAccountDetails
= new BankAccountDetails();

 int bankAccountId =
bankAccountService.createBankAccount(bankAccountDetails);

 FixedDepositService FixedDepositService
= context.getBean(FixedDepositService.class);

 FixedDepositDetails fixedDepositDetails
= new FixedDepositDetails();

 fixedDepositDetails.setEmail("someUser@someDomain.com");

 FixedDepositService.createFixedDeposit(fixedDepositDetails);

 FixedDepositService.findFixedDepositsByBankAccount(bankAccountId);

 FixedDepositService.findFixedDepositsByBankAccount(bankAccountId);

 FixedDepositService.createFixedDeposit(fixedDepositDetails);

 List<FixedDepositDetails>
FixedDepositDetailsList = FixedDepositService

 .findFixedDepositsByBankAccount(bankAccountId);

 for (FixedDepositDetails detail : FixedDepositDetailsList)
{

 FixedDepositService.getFixedDeposit(detail.getFixedDepositId());

 }

 for (FixedDepositDetails detail : FixedDepositDetailsList)
{

 FixedDepositService.getFixedDepositFromCache(detail.getFixedDepositId());

 }

 }

}

In the above
example listing, following sequence of actions are performed by the main method:

Step 1. First, a bank account is
created in the BANK_ACCOUNT_DETAILS table by calling BankAccountService’s createBankAccount method.

Step 2. Corresponding to the
newly created bank account, a fixed deposit is created in the FIXED_DEPOSIT_DETAILS table by calling FixedDepositService’s createFixedDeposit method. You should make sure that email property of FixedDepositDetails object is set to the email id where you can check the emails. The createFixedDeposit method sends 2 JMS messages (refer example listing 8-5). One JMS
message contains the email id specified by the FixedDepositDetails object’s email
property, and is processed by EmailMessageListener (refer example listing 8-16) that sends an email to the customer.
The other JMS message is processed by FixedDepositMessageListener (refer
example listing 8-11) that saves the fixed deposit details in the FIXED_DEPOSIT_DETAILS table. You should also note that FixedDepositServiceImpl’s createFixedDeposit method is annotated with @CacheEvict annotation (refer example
listing 8-30) that results in removing all the items cached in FixedDepositList cache.

Step 3. FixedDepositService’s findFixedDepositsByBankAccount method is invoked that retrieves fixed deposits corresponding to
the bank account that we created in Step 1. As the findFixedDepositsByBankAccount method is annotated with @Cacheable annotation (refer example
listing 8-29), fixed deposits returned by the findFixedDepositsByBankAccount method
are stored in the cache named FixedDepositList. Listing 8-29 showed that findFixedDepositsByBankAccount method
writes the following message to the console ‘findFixedDepositsByBankAccount method
invoked’. In the above example listing, the findFixedDepositsByBankAccount is called twice for the same bankAccountId argument, but you’ll
notice that only once ‘findFixedDepositsByBankAccount
method invoked’ is written to the console. This is
because the second call to the findFixedDepositsByBankAccount results in retrieving fixed deposit details from the cache named FixedDepositList, and the findFixedDepositsByBankAccount method is not executed.

Step 4. Corresponding to the bank
account created in Step 1, another fixed deposit is created in the FIXED_DEPOSIT_DETAILS table by calling FixedDepositService’s createFixedDeposit method. Now, the FixedDepositServiceImpl’s createFixedDeposit method is annotated with @CacheEvict annotation (refer example
listing 8-30) that results in removing all the items cached in FixedDepositList cache.

Step 5. FixedDepositService’s findFixedDepositsByBankAccount method is invoked once again. This time findFixedDepositsByBankAccount is executed because the previous call to createFixedDeposit method (refer Step 4) resulted in evicting all the items from the FixedDepositList cache. At this time, you’ll once again see ‘findFixedDepositsByBankAccount
method invoked’ message written on the console. The
fixed deposits returned by the findFixedDepositsByBankAccount method are cached in FixedDepositList cache because the
method is annotated with @Cacheable annotation.

Step 6. For each fixed deposit
retrieved in Step 5, FixedDepositService’s getFixedDeposit method (refer example listing 8-31) is invoked. The getFixedDeposit method accepts the fixed deposit identifier and returns the fixed
deposit information from the database. The getFixedDeposit method is annotated
with @CachePut, which means it is always invoked. The fixed
deposit returned by the getFixedDeposit method is cached in the FixedDeposit cache.

Step 7. For each fixed deposit
retrieved in Step 5, FixedDepositService’s getFixedDepositFromCache method (refer example listing 8-31) is invoked. The getFixedDepositFromCache method accepts the fixed deposit identifier and throws a RuntimeException on execution. The getFixedDepositFromCache method is annotated with @Cacheable, and is executed only when
the fixed deposit is not found in the FixedDeposit cache. As all the fixed
deposits were cached by the getFixedDeposit method in Step 6, the getFixedDepositFromCache method is
never executed.

Step 8. Every 5 seconds, the FixedDepositProcessorJob (refer example listing 8-17) checks if any new fixed deposits have
been created in the database. If new fixed deposits are found in the database,
the FixedDepositProcessorJob activates the fixed deposit and sends an email to the customer,
confirming that the fixed deposit request has been successfully processed.

8-9 Summary

In this
chapter, we touched upon some of the frequently used features of Spring. We saw
that Spring simplifies sending and receiving JMS messages, sending emails,
asynchronously invoking bean methods, scheduling bean methods for execution,
and caching data. In the next chapter, we’ll look at Spring’s support for AOP
(Aspect-oriented programming).

Chapter 9 - Aspect-oriented programming

9-1
Introduction

Aspect-oriented
programming (AOP) is a programming approach in which responsibilities that are
distributed across multiple classes are encapsulated into a separate class,
referred to as an ‘aspect’. The responsibilities that are distributed across
multiple classes are referred to as ‘cross-cutting concerns’. Logging,
transaction management, caching, security, and so on, are examples of
cross-cutting concerns.

Spring
provides an AOP framework that is used internally by Spring for implementing
declarative services, like transaction management (refer chapter 7) and caching
(refer chapter 8). Instead of using Spring AOP framework, you can consider
using AspectJ (http://www.eclipse.org/aspectj/) as the AOP framework for your application. As Spring AOP framework
is sufficient for most AOP scenarios, and provides integration with the Spring
container, this chapter focuses on Spring AOP framework.

Let’s
begin this chapter by looking at an example usage of AOP.

9-2 A simple
AOP example

Let’s say
that for auditing purposes we want to capture the arguments passed to the
methods of classes defined in the service layer of MyBank application. A simple
approach to log details of method arguments is to write the logging logic
inside each method. But, this would mean that each method is additionally responsible for logging details of method arguments. As the
responsibility to log details of method arguments is distributed across
multiple classes and methods, it represents a cross-cutting concern.

To address
a cross-cutting concern using AOP, you need to follow these steps:

·
create a Java class (referred to as an aspect)

·
add implementation of the cross-cutting concern
to the Java class, and

·
use a regular expression to specify the methods
to which the cross-cutting concern applies

In terms
of AOP terminology, the methods of an aspect that implement cross-cutting
concerns are referred to as advices. And, each advice is associated with a pointcut
that identifies the methods to which the advice applies. The methods to which
an advice applies are referred to as join points.

In Spring
AOP, you have the option to develop an aspect using AspectJ annotation-style or XML schema-style. In AspectJ annotation-style, AspectJ annotations, like @Aspect, @Pointcut, @Before, and
so on, are used to develop an aspect. In XML schema-style, elements of Spring’s
aop schema are used to configure a Spring bean as an aspect.

IMPORT chapter 9/ch09-simple-aop (The ch09-simple-aop project shows the MyBank
application that uses Spring AOP to log details of method arguments passed to
the methods defined by the classes in the service layer
of MyBank application. To run the application, execute
the main method of the BankApp class of this project)

The
following example listing shows the logging aspect that logs details of the
arguments passed to service methods in MyBank application:

Example listing 9-1 – LoggingAspect
class

Project
– ch09-simple-aop

Source location -
src/main/java/sample/spring/chapter09/bankapp/aspects

package sample.spring.chapter09.bankapp.aspects;

import org.aspectj.lang.JoinPoint;

import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.Before;

import org.springframework.stereotype.Component;

@Aspect

@Component

public class LoggingAspect {

 private Logger logger =
Logger.getLogger(LoggingAspect.class);

 @Before(value = "execution(*
sample.spring.chapter09.bankapp.service.*Service.*(..))")

 public void log(JoinPoint joinPoint)
{

 logger.info("Entering "

 +
joinPoint.getTarget().getClass().getSimpleName() + "'s "

 +
joinPoint.getSignature().getName());

 Object[] args =
joinPoint.getArgs();

 for (int i = 0; i < args.length;
i++) {

 logger.info("args[" + i
+ "] -->" + args[i]);

 }

 }

}

In example
listing 9-1:

·
AspectJ’s @Aspect type-level annotation specifies that the LoggingAspect
class is an AOP aspect

·
AspectJ’s @Before method-level
annotation specifies that the log method represents an advice that is applied before the methods matched by the value attribute are executed. Refer
section 9-5 to learn about different advice types that you can create.

·
@Before annotation’s value attribute specifies a pointcut expression that is
used by Spring AOP framework to identify methods (referred to as target methods) to which an advice applies. In section 9-4, we’ll take an in-depth look at pointcut expressions.
For now, you can assume that the pointcut expression execution(* sample.spring.chapter09.bankapp.service.*Service.*(..)) specifies that LoggingAspect’s log method is applied to all the public methods
defined by classes (or interfaces) in sample.spring.chapter09.bankapp.service package, and whose names end with Service.

·
The log method’s JoinPoint
argument represents the target method to which the advice is being applied. The
log method uses JoinPoint instance to retrieve information about the arguments passed to the
target method. In example listing 9-1, JoinPoint’s getArgs method
is invoked to retrieve the method arguments being passed to the target method.

You need
to register an aspect with the Spring container so that the Spring AOP framework
is made aware of the aspect. In example listing 9-1, the LoggingAspect
class is annotated with Spring’s @Component annotation so that it is
automatically registered with the Spring container.

The
following example listing shows the BankApp class that invokes methods of
BankAccountServiceImpl (implements BankAccountService interface) and FixedDepositServiceImpl (implements FixedDepositService interface) classes of MyBank application:

Example listing 9-2 – BankApp
class

Project
– ch09-simple-aop

Source location - src/main/java/sample/spring/chapter09/bankapp

package sample.spring.chapter09.bankapp;

.....

public class BankApp {

 public static void main(String args[])
throws Exception {

 ApplicationContext context = new
ClassPathXmlApplicationContext(

"classpath:META-INF/spring/applicationContext.xml");

 BankAccountService bankAccountService
= context.getBean(BankAccountService.class);

 BankAccountDetails bankAccountDetails
= new BankAccountDetails();

bankAccountDetails.setBalanceAmount(1000);

bankAccountDetails.setLastTransactionTimestamp(new Date());

 bankAccountService.createBankAccount(bankAccountDetails);

 FixedDepositService FixedDepositService
= context.getBean(FixedDepositService.class);

 FixedDepositService.createFixedDeposit(new
FixedDepositDetails(1, 1000,

 12,
"someemail@somedomain.com"));

 }

}

In the
above example listing, BankAccountService’s createBankAccount and FixedDepositService’s createFixedDeposit methods are invoked by BankApp’s main method.
If you execute BankApp’s main method, you’ll see the following output on
the console:

INFO
LoggingAspect - Entering BankAccountServiceImpl's createBankAccount

INFO
LoggingAspect - args[0] -->BankAccountDetails [accountId=0,
balanceAmount=1000, lastTransactionTimestamp=Sat Oct 27 16:48:11 IST 2012]

INFO
BankAccountServiceImpl - createBankAccount method invoked

INFO
LoggingAspect - Entering FixedDepositServiceImpl's createFixedDeposit

INFO
LoggingAspect - args[0] -->id :1, deposit amount : 1000.0, tenure : 12,
email : someemail@somedomain.com

INFO
FixedDepositServiceImpl - createFixedDeposit method invoked

The above
output shows that LoggingAspect’s log method is executed before the execution of BankAccountService’s createBankAccount and FixedDepositService’s createFixedDeposit method.

In the
context of LoggingAspect, let’s look at how Spring AOP framework works.

NOTE To use AspectJ annotation-style aspects, ch09-simple-aop project defines dependency on spring-aop, aopalliance, aspectjrt
and aspectjweaver JAR files. Please refer to the pom.xml file of ch09-simple-aop project for details.

9-3 Spring
AOP framework

Spring AOP
framework is proxy-based; a proxy
object is created for objects that are target of an
advice. A proxy is an intermediary object, introduced
by the AOP framework, between the calling object and the target object. At
runtime, calls to the target object are intercepted by the proxy, and advices
that apply to the target method are executed by the proxy. In Spring AOP, a
target object is a bean instance registered with the Spring container.

The
following diagram shows how the LoggingAspect’s log method (refer example listing 9-1) is applied to the methods of BankAccountService and FixedDepositService objects (refer example listing 9-2):

Figure 9-1 The proxy object is
responsible for intercepting method calls to the target object and executing
the advices that apply to the target method.

The above
diagram shows that a proxy is created for both BankAccountService and FixedDepositService objects. The proxy for BankAccountService intercepts the call to BankAccountService’s createBankAccount method, and the proxy for FixedDepositService intercepts the call to FixedDepositService’s createFixedDeposit method. The proxy for BankAccountService first executes LoggingAspect’s log method, followed by BankAccountService’s createBankAccount method invocation. Similarly, the proxy for
FixedDepositService first executes LoggingAspect’s
log method, followed by FixedDepositService’s createFixedDeposit method invocation.

The timing
of the execution of an advice (like the log method of LoggingAspect
aspect) depends on the type of the advice. In AspectJ annotation-style, type of an advice is
specified by the AspectJ annotation on the advice. For instance, AspectJ’s @Before
annotation specifies that the advice is executed before
the invocation of the target method, @After annotation specifies that the
advice is executed after the invocation of the target method, @Around annotation specifies that the
advice is executed both before and after the execution of the target method, and so on. As LoggingAspect’s
log method is annotated with @Before annotation, log method is
executed before the execution of the target object’s method.

Let’s now
look at how Spring AOP framework creates a proxy object.

Proxy
creation

When using
Spring AOP, you have the option to explicitly create AOP proxies via Spring’s ProxyFactoryBean (refer to org.springframework.aop.framework package) or you can let Spring automatically create AOP proxies.
The automatic generation of AOP proxies by Spring AOP is referred to as autoproxying.

If you
want to use AspectJ annotation-style for creating aspects, you need to enable
support for using AspectJ annotation-style by specifying Spring aop schema’s <aspectj-autoproxy> element. The <aspectj-autoproxy> element also instructs Spring AOP framework to automatically create AOP
proxies for target objects. The following example listing shows usage of <aspectj-autoproxy> element in ch09-simple-aop project:

Example listing 9-3 – applicationContext.xml - <aspectj-autoproxy> element

Project
– ch09-simple-aop

Source location -
src/main/resources/META-INF/spring

<beans

xmlns:context="http://www.springframework.org/schema/context"

 xmlns:aop="http://www.springframework.org/schema/aop"

xsi:schemaLocation=".....http://www.springframework.org/schema/aop

 http://www.springframework.org/schema/aop/spring-aop-4.0.xsd">

 <context:component-scan
base-package="sample.spring" />

 <aop:aspectj-autoproxy
proxy-target-class="false" expose-proxy="true"/>

</beans>

The <aspectj-autoproxy> element’s proxy-target-class attribute specifies whether JavaSE- or CGLIB-based proxies are created for
target objects, and expose-proxy attribute specifies whether the AOP proxy itself is available to the target
object. If expose-proxy’s value is set to true, the target object’s method can access the AOP proxy by calling AopContext’s currentProxy
static method.

Spring AOP
framework creates a CGLIB- or JavaSE-based proxy. If the target object doesn’t
implement any interface, Spring AOP creates a CGLIB-based proxy. If the target
object implements one or more interfaces, Spring AOP creates a JavaSE-based
proxy. If the value of <aspectj-autoproxy> element’s proxy-target-class attribute is set to false, it instructs Spring AOP to create a JavaSE-based proxy if the
target object implements one or more interface. If you set proxy-target-class attribute’s value to true, it instructs Spring AOP to
create CGLIB-based proxies even if a target object implements one or more
interfaces.

NOTE
Starting with Spring 3.2, the CGLIB classes are packaged within the spring-core JAR file itself; therefore, you don’t need to explicitly include CGLIB JAR
file in your application to allow Spring AOP framework to create CGLIB-based
proxies for target objects.

Let’s now
look at a scenario in which you’d prefer to set expose-proxy attribute of <aspectj-autoproxy> element to true.

IMPORT chapter 9/ch09-aop-proxy (The ch09-aop-proxy project shows the MyBank
application in which AopProxy’s currentProxy method is used by a target method to retrieve the AOP proxy object
created by Spring AOP framework. To run the application, execute the main method of
the BankApp class of this project)

expose-proxy attribute

The
following example listing shows a modified BankAccountServiceImpl class in which
the createBankAccount method invokes the isDuplicateAccount method to check if a bank account with same details already exists
in the system:

Example listing 9-4 – BankAccountServiceImpl class

@Service(value =
"bankAccountService")

public class BankAccountServiceImpl
implements BankAccountService {

 @Autowired

 private BankAccountDao bankAccountDao;

 @Override

 public int
createBankAccount(BankAccountDetails bankAccountDetails) {

 if(!isDuplicateAccount(bankAccountDetails))
{

 return
bankAccountDao.createBankAccount(bankAccountDetails);

 } else {

 throw new BankAccountAlreadyExistsException("Bank
account already exists");

 }

 }

 @Override

 public boolean isDuplicateAccount(BankAccountDetails
bankAccountDetails) { }

}

The above
example listing shows that the createBankAccount method invokes the isDuplicateAccount method to check if the bank account already exists in the system.

Now, the
question arises that whether the LoggingAspect’s log method
(refer example listing 9-1) will be executed when the isDuplicateAccount method is invoked by the createBankAccount method? Even though
the isDuplicateAccount method matches the pointcut expression specified by @Before
annotation on the LoggingAspect’s log method (refer example listing 9-1), the LoggingAspect’s
log method is not invoked. This is because methods invoked by the target object on
itself are not proxied by the AOP proxy. As the method invocation doesn’t go
through the AOP proxy object, any advice that is associated with the target
method is not executed.

To ensure
that the call to isDuplicateAccount method goes to the target object through the AOP proxy, retrieve
the AOP proxy object in the createBankAccount method and invoke the isDuplicateAccount method on the AOP
proxy object. The following example listing shows how to retrieve AOP proxy
object inside the createBankAccount method:

Example listing 9-5 – BankAccountServiceImpl
class

Project
– ch09-aop-proxy

Source location - src/main/java/sample/spring/chapter09/bankapp/service

package sample.spring.chapter09.bankapp.service;

import
org.springframework.aop.framework.AopContext;

.....

@Service(value =
"bankAccountService")

public class BankAccountServiceImpl
implements BankAccountService {

 @Override

 public int
createBankAccount(BankAccountDetails bankAccountDetails) {

 //-- obtain the proxy and invoke the
isDuplicateAccount method via proxy

 boolean isDuplicateAccount =

 ((BankAccountService)AopContext.currentProxy()).isDuplicateAccount(bankAccountDetails);

 if(!isDuplicateAccount) { }

 }

 @Override

 public boolean isDuplicateAccount(BankAccountDetails
bankAccountDetails) { }

}

In the
above example listing, call to AopContext’s currentProxy method returns the AOP proxy that made the call to the createBankAccount method. If the createBankAccount method is not invoked through Spring AOP framework or the value of expose-proxy
attribute of <aspectj-autoproxy> element is false, call to the currentProxy method will result in throwing java.lang.IllegalStateException. As
the AOP proxy implements the same interface as the target object, the above
example listing shows that the AOP proxy returned by the currentProxy
method is cast to BankAccountService type and BankAccountService’s isDuplicateAccount method is invoked.

If you now
go to ch09-aop-proxy project and execute BankApp’s main method,
you’ll notice that LoggingAspect’s log method is executed when isDuplicateAccount method is invoked
by the createBankAccount method.

Let’s now
take at an in-depth look at pointcut expressions.

9-4 Pointcut
expressions

When using
Spring AOP, a pointcut expression identifies the join points to which an advice is applied. In Spring AOP, join points are always bean methods. If you want to apply an advice to fields,
constructors, non-public methods, and to objects that are not Spring beans, you
should use AspectJ instead of Spring AOP framework. If you want to develop
aspects using AspectJ annotation-style, you have the option to specify a
pointcut expression using AspectJ’s @Pointcut annotation or by using
AspectJ’s @Before, @After, and so on, annotations that specify the advice type.

Pointcut
expressions use pointcut
designators, like execution, args, within, this, and so
on, to find matching methods to which an advice is applied. For instance, in
example listing 9-1, @Before annotation made use of execution pointcut designator to find
methods to which the LoggingAspect’s log method is applied.

Let’s now
look at how pointcut expressions are specified using @Pointcut
annotation.

IMPORT chapter 9/ch09-aop-pointcuts (The ch09-aop-pointcuts project shows the MyBank application that uses AspectJ’s @Pointcut
annotation to specify a pointcut expression. To run the application, execute
the main method of the BankApp class of this project)

@Pointcut annotation

@Pointcut annotation’s value
attribute specifies the pointcut expression. To use @Pointcut
annotation, create an empty method and annotate it with @Pointcut annotation. The empty
method must
be defined to return void. An advice that refers to the
name of the @Pointcut annotated method is applied to the methods matched by the
pointcut expression specified by the @Pointcut annotation.

NOTE
Using @Pointcut
annotation is particularly
useful if a pointcut expression is shared by multiple advices in the same or
different aspects.

The
following example listing shows a modified version of LoggingAspect
(refer example listing 9-1) class that uses @Pointcut annotation:

Example listing 9-6 – LoggingAspect
class

Project
– ch09-aop-pointcuts

Source location - src/main/java/sample/spring/chapter09/bankapp/aspects

package sample.spring.chapter09.bankapp.aspects;

import org.aspectj.lang.annotation.Before;

import org.aspectj.lang.annotation.Pointcut;

@Aspect

@Component

public class LoggingAspect {

 @Pointcut(value = "execution(*
sample.spring.chapter09.bankapp.service.*Service.*(..))")

 private void invokeServiceMethods()
{ }

 @Before(value =
"invokeServiceMethods()")

 public void log(JoinPoint joinPoint) {

 logger.info("Entering " +
joinPoint.getTarget().getClass().getSimpleName() + "'s "

 +
joinPoint.getSignature().getName());

 }

}

In the
above example listing, the invokeServiceMethods method is annotated with @Pointcut annotation, and @Before
annotation’s value attribute refers to the invokeServiceMethods method. This
means that the log method is applied to the methods that match the pointcut expression
specified by the @Pointcut annotation on the invokeServiceMethods method.

As the execution and args pointcut
designators are mostly used when specifying pointcut expressions, let’s look at
execution and args pointcut designators in detail.

execution and args pointcut
designators

The execution
pointcut designator has the following format:

execution(<access-modifier-pattern> <return-type-pattern>
<declaring-type-pattern> <method-name-pattern>(<method-param-pattern>)
<throws-pattern>)

If you
compare an execution expression to a method declaration, you’ll notice that an execution
expression is similar to a method declaration.

Figure 9-2 Different parts of an execution
expression map to different parts of a method declaration.

Figure 9-2
shows how the different parts of an execution expression map to a method
declaration:

Spring AOP
framework matches different parts of an execution expression with different
parts of a method declaration (as shown above) to find the methods to which an
advice is applied. The <declaring-type-pattern> is not shown in the above figure because <declaring-type-pattern> is only used when you want to refer to methods contained in a
particular type or package.

The following table describes different parts of an execution
expression:

 	
 Expression part

 	
 Description

 	
 access-modifier-pattern

 	
 Specifies the access modifier of the target method. In Spring AOP,
 the only value that can be specified for this expression part is public. This
 part of execution expression is optional.

 	
 return-type-pattern

 	
 Specifies the fully-qualified name of the return type of the
 target method. A value of * means that the return type of a method doesn’t matter.

 	
 declaring-type-pattern

 	
 Specifies the fully-qualified name of the type that contains the
 target method. This part of execution expression is optional. A value of * means that all types (classes and interfaces) in the application
 are considered by the pointcut expression.

 	
 method-name-pattern

 	
 Specifies the method name pattern. For instance, a value of save* means
 that the methods whose names begin with save are target of advice.

 	
 method-param-pattern

 	
 Specifies the method parameter pattern. If the value is (..), it
 means target method can contain any number of arguments or no arguments at
 all.

 	
 throws-pattern

 	
 Specifies the exception(s) thrown by the target method. This part
 of execution expression is optional.

The args pointcut
designator specifies the arguments that must be accepted by the target method at runtime. For instance, if you want pointcut expression to locate methods
that accept an instance of java.util.List at runtime, then the args expression looks like: args(java.util.List). Later in this section, we’ll see how args pointcut
designator can be used to make arguments passed to the target method available
to an advice.

Let’s now
look at some pointcut expressions that use execution and args pointcut
designators:

Example 1

Figure 9-3 execution
expression that uses a method name pattern

The
methods matched by the above pointcut expression are the methods whose names
start with createFixed. The return type is specified as *, which means the target method may
return any type. The (..) specifies that the target method may accept zero or more arguments.

Example 2

Figure 9-4 execution
expression that specifies the type (class or interface)
containing the target method(s)

The methods
matched by the above pointcut expression are the methods defined by the MyService type
in sample package.

Example 3

Figure 9-5 execution
expression that specifies an exception pattern for the method

The
methods matched by the above pointcut expression are the methods of sample.MyService type that specify a throws clause.

Example 4

Figure 9-6 args pointcut
designator specifies the object instance passed to the
target method

In the
above pointcut expression, combinations of execution and args pointcut
designators have been used. You can combine pointcut designators using && and|| operators
to create complex pointcut expressions. The methods matched by the above
pointcut expression are the methods defined in sample.MyService type that accept an
instance of SomeObject at runtime. The && in the above pointcut expression specifies that the target method must match the expressions specified by the execution and args pointcut
designators.

If you
want an advice to have access to one or more method arguments passed to the
target method, specify names of the method arguments in the args
expression, as shown here:

Figure 9-7 args pointcut
designator specifies the target method’s argument(s) that must be made available to the advice

In the
above pointcut expression, args expression specifies that the target method must accept an argument of type SomeObject, and that argument is
available to advice via xyz parameter. Let’s see, a real example that makes use of this feature
to pass arguments to the advice.

Passing
target method’s arguments to an advice

The
following example listing shows a modified version of LoggingAspect
in which log method is executed only if the method argument passed to the target
method is an instance of FixedDepositDetails, and that FixedDepositDetails instance is also made available to the log method:

Example listing 9-7 – LoggingAspect
class – passing target method’s
arguments to an advice

import org.aspectj.lang.annotation.Before;

import org.aspectj.lang.annotation.Pointcut;

@Aspect

@Component

public class LoggingAspect {

 @Pointcut(value =

 "execution(*
sample.spring.chapter09.bankapp.service.*Service.*(..))

 &&
args(FixedDepositDetails) ")

 private void invokeServiceMethods(FixedDepositDetails
FixedDepositDetails) {

 }

 @Before(value = "invokeServiceMethods(FixedDepositDetails)")

 public void log(JoinPoint joinPoint, FixedDepositDetails
FixedDepositDetails) {

 }

}

In the
above example listing, the args expression specifies that the FixedDepositDetails instance passed
to the target method is available to log method (an advice) via FixedDepositDetails parameter. As the args expression provides log method with an instance of FixedDepositDetails object, the log method has
been modified to accept an additional argument of type FixedDepositDetails.

Pointcut
designators, like execution, args, within, this, target, and so on, are defined by AspectJ. Spring AOP defines a bean pointcut
designator that is specific to Spring AOP framework. Let’s take a quick look at
bean pointcut designator.

bean pointcut designator

The bean pointcut
designator is for limiting the target methods to the specified bean id (or
name). You can specify the exact bean id or name, or you can specify a pattern.
Let’s look at a few examples of bean pointcut designator:

Example 1

Figure 9-8 bean pointcut
designator specifies the bean id or name whose methods are target of the advice

The
methods matched by the above pointcut expression are the methods defined by the bean named someBean.

Example 2

Figure 9-9 bean pointcut designator specifies that
an advice is applied to the methods of the beans whose id or name begin with someBean.

In the
above pointcut expression, bean pointcut designator specifies that an advice is applied to the
methods of the beans whose id or name begin with someBean.

NOTE
Like any other pointcut designator, you can combine bean pointcut designator with other pointcut
designators using &&
and ||operators to form complex pointcut expressions.

Let’s now
look at pointcut designators that perform matching based on annotations.

Annotations-based
pointcut designators

AspectJ
also provides pointcut designators, like @annotation, @target, @within and @args that you
can use with Spring AOP to find target methods. Let’s look at couple of
examples that show usage of these pointcut designators:

Example 1

Figure 9-10 @annotation pointcut
designator specifies that an advice is applied to the methods annotated with
Spring’s Cacheable annotation

The
methods matched by the above pointcut expression are the methods annotated with
Spring’s @Cacheable annotation.

Example 2

Figure 9-11 @target pointcut
designator specifies that advice is applied to the methods of objects annotated
with Spring’s @Component annotation

The
methods matched by the above pointcut expression are the methods contained in
an object annotated with Spring’s @Component annotation.

In this
section, we looked at some of the pointcut designators defined by AspectJ. It
is important to note that not all pointcut designators defined by AspectJ are supported by Spring
AOP framework. If you use an unsupported pointcut designator in pointcut
expressions, Spring AOP framework throws a java.lang.IllegalArgumentException.
For instance, if you use call, set and get pointcut designators in pointcut expressions, Spring AOP will throw
java.lang.IllegalArgumentException.

Let’s now
look at different advice types and how to create them.

9-5 Advice
types

So far in
this chapter, we’ve seen examples of before
advice type. A before advice type is created by annotating a method of an
aspect with @Before annotation (refer listing 9-1, 9-6 and 9-7). The other advice types
that you can create are after, after
returning, after throwing, after and around.

IMPORT chapter 9/ch09-aop-advices (The ch09-aop-advices project shows the MyBank application that uses different advice
types. To run the application, execute the main method of the BankApp class
of this project)

Let’s now
look at salient features of various advice types, and how to create them.

Before advice

A before advice is executed before the target method is executed. If a
before advice doesn’t throw an exception, the target method will always be invoked. You can control whether the target method is executed
or not, by using an around advice (explained later in this section). As discussed earlier,
AspectJ’s @Before annotation is used to indicate that an advice is a before advice.

@Before annotated method may define
its first argument to be of type JoinPoint. You can use the JoinPoint
argument inside the advice to retrieve information about the target method. For
instance, listing 9-1 showed that the JoinPoint instance can be used to
obtain the class name of the target object and the arguments passed to the
target method.

After
returning advice

An after returning advice is executed after the target method
returns. You should note that an after returning advice is
not executed if the target method throws an exception. An after returning advice is annotated with AspectJ’s @AfterReturning annotation. An after returning advice can access the value returned by the target method, and
modify it before it is returned to the calling object.

The SampleAspect
class of ch09-aop-advices project represents an AOP aspect. The following example listing
shows that the SampleAspect class defines an after returning advice that
prints the value returned by BankAccountService’s createBankAccount method:

Example listing 9-8 – SampleAspect
class – after returning advice

Project
– ch09-aop-advices

Source location -
src/main/java/sample/spring/chapter09/bankapp/aspects

package sample.spring.chapter09.bankapp.aspects;

import org.aspectj.lang.annotation.AfterReturning;

.....

@Aspect

public class SampleAspect {

 private Logger logger =
Logger.getLogger(SampleAspect.class);

 @Pointcut(value = "execution(*
sample.spring..BankAccountService.createBankAccount(..))")

 private void createBankAccountMethod() {}

 @AfterReturning(value =
"createBankAccountMethod()", returning = "aValue")

 public void afterReturningAdvice(JoinPoint
joinPoint, int aValue) {

 logger.info("Value returned
by " + joinPoint.getSignature().getName()

 + " method is
" + aValue);

 }

}

In the
above example listing, afterReturningAdvice method represents an after returning advice. The
pointcut expression specified by the @Pointcut annotation limits the join
point to BankAccountService’s createBankAccount method. The .. in the execution expression specifies that the sample.spring package and its
sub-packages are searched to find the BankAccountService type.

In example
listing 9-8, SampleAspect’s afterReturningAdvice method is invoked after the invocation of BankAccountService’s createBankAccount method. The returning attribute of @AfterReturning annotation specifies the name with which the return value of the
target method is available to the advice. In the above example listing, the
value returned by the createBankAccount method is made available to the afterReturningAdvice method via aValue
argument. The type of the aValue argument has been specified as int because the createBankAccount method returns an int value. You should note that if you specify the returning
attribute, the advice is applied only to methods that return the specified
type. If an after
returning advice is applied to methods that return
different value types (including void), you can specify argument type
of the returned value as Object.

As shown
in example listing 9-8, a @AfterReturning annotated method may define its first argument to be of type JoinPoint to
access target method information.

After
throwing advice

An after throwing advice is executed when the target method throws an exception. An after throwing advice can access the exception thrown by the target method. An after throwing advice is annotated with AspectJ’s @AfterThrowing annotation.

The
following example listing shows an after throwing advice that
is executed when an exception is thrown by target methods:

Example listing 9-9 – SampleAspect
class – after throwing advice

Project
– ch09-aop-advices

Source location -
src/main/java/sample/spring/chapter09/bankapp/aspects

package sample.spring.chapter09.bankapp.aspects;

import
org.aspectj.lang.annotation.AfterThrowing;

.....

@Aspect

public class SampleAspect {

 private Logger logger =
Logger.getLogger(SampleAspect.class);

 @Pointcut(value = " execution(*
sample.spring..FixedDepositService.*(..)) ")

 private void exceptionMethods() {}

 @AfterThrowing(value =
"exceptionMethods()", throwing = "exception")

 public void afterThrowingAdvice(JoinPoint
joinPoint, Throwable exception) {

 logger.info("Exception thrown by
" + joinPoint.getSignature().getName()

 + " Exception type is :
" + exception);

 }

}

In the
above example listing, SampleAspect’s afterThrowingAdvice method represents an after throwing advice. The afterThrowingAdvice method is executed when an exception is thrown by any of the FixedDepositService object’s methods. In the above example listing, the throwing
attribute of @AfterThrowing annotation specifies the name with which the exception thrown by
the target method is made available to the afterThrowingAdvice method. As the throwing
attribute’s value is exception, the exception is passed to the afterThrowingAdvice
method via argument named exception. Notice that the type of the exception argument is java.lang.Throwable, which means that the afterThrowingAdvice method is
executed for all exceptions thrown by the target method. If you want afterThrowingAdvice method is executed only when a specific exception type is thrown by
the target method, change the type of the exception argument. For instance, if
you want the afterThrowingAdvice method is executed only when the target method throws java.lang.IllegalStateException, specify java.lang.IllegalStateException as the type of the exception argument.

As shown
in example listing 9-9, @AfterThrowing annotated method may define its first argument to be of type JoinPoint to
access target method information.

After advice

An after advice is executed after the target method is executed, irrespective
of whether the target method completes normally or throws an exception. An after advice is annotated with AspectJ’s @After annotation.

The
following example listing shows an after advice that is
executed for BankAccountService’s createBankAccount method, and for the methods defined by the FixedDepositService interface:

Example listing 9-10 – SampleAspect
class – after advice

Project
– ch09-aop-advices

Source location -
src/main/java/sample/spring/chapter09/bankapp/aspects

package sample.spring.chapter09.bankapp.aspects;

import org.aspectj.lang.annotation.After;

.....

@Aspect

public class SampleAspect {

 private Logger logger =
Logger.getLogger(SampleAspect.class);

 @Pointcut(value = "execution(*
sample.spring..BankAccountService.createBankAccount(..))")

 private void createBankAccountMethod()
{}

 @Pointcut(value = "execution(*
sample.spring..FixedDepositService.*(..))")

 private void exceptionMethods() {}

 @After(value =
"exceptionMethods() || createBankAccountMethod()")

 public void afterAdvice(JoinPoint
joinPoint) {

 logger.info("After advice
executed for " + joinPoint.getSignature().getName());

 }

}

In the
above example listing, SampleAspect’s afterAdvice method represents an after advice. The afterAdvice
method is executed after the target method is executed. Notice that the @After
annotation’s value attribute uses || operator to combine pointcut expressions represented by the createBankAccountMethod and exceptionMethods methods to form a new pointcut expression.

As shown
in example listing 9-10, @After annotated method may define its first argument to be of type JoinPoint, to
access target method information.

Around advice

An around advice is executed both before and after the execution of the target method. Unlike other advices, an around advice can control whether the target method is executed or not. An
around advice is annotated with AspectJ’s @Around annotation.

The
following example listing shows an around advice defined by SampleAspect
class of ch09-aop-advices project:

Example listing 9-11 – SampleAspect
class – around advice

Project
– ch09-aop-advices

Source location - src/main/java/sample/spring/chapter09/bankapp/aspects

package sample.spring.chapter09.bankapp.aspects;

import
org.aspectj.lang.ProceedingJoinPoint;

import org.aspectj.lang.annotation.Around;

import org.springframework.util.StopWatch;

.....

@Aspect

public class SampleAspect {

 @Around(value = "execution(*
sample.spring..*Service.*(..))")

 public Object
aroundAdvice(ProceedingJoinPoint pjp) {

 Object obj = null;

 StopWatch watch = new StopWatch();

 watch.start();

 try {

 obj = pjp.proceed();

 } catch (Throwable throwable) {

 // -- perform any action that you
want

 }

 watch.stop();

 logger.info(watch.prettyPrint());

 return obj;

 }

}

In the
above example listing, the aroundAdvice method represents an around advice. The ProceedingJoinPoint argument to the aroundAdvice method is meant for controlling the invocation of the target
method. It is important to note that ProceedingJoinPoint argument must be the first argument passed to an around
advice. When you invoke ProceedingJoinPoint’s proceed method, the target method is invoked. This means that if you don’t
invoke the ProceedingJoinPoint’s proceed method, the target method is not
invoked. If you pass an Object[] to the proceed method, the values contained in the Object[] are passed as arguments to
the target method. If an around advice chooses not to
invoke the target method, the around advice may itself return a value.

As the
target method is invoked only when you call ProceedingJoinPoint’s
proceed method, around advice allows you to perform actions before and after the invocation of the target method, and to share information
between these action. In example listing 9-11, the aroundAdvice
method records the time taken for the target method to execute. The aroundAdvice
method starts a stop watch (represented by Spring’s StopWatch
object) before calling ProceedingJoinPoint’s proceed method, and stops the stop watch after calling ProceedingJoinPoint’s proceed method. StopWatch’s prettyPrint method is then used to print the time taken by the target method to
execute.

If you
want to modify the value returned by the target method, cast the returned value
of ProceedingJoinPoint’s proceed method to the return type of the target method and modify it. A
calling method sees the value returned by the around advice; therefore, you must define the return type of an advice method as Object or the
type that is returned by the target method. An advice method has the option to
return the value returned by the target method, or to return a different value
altogether. For instance, instead of invoking the target method, an around
advice may inspect the argument(s) being passed to the target method and return
a value from the cache if a cache entry exists for the same set of arguments.

So far we
have looked at examples that showed how to use AspectJ annotation-style to
create aspects. Let’s now look at how to use a regular Spring bean as an AOP
aspect.

9-6 Spring
AOP - XML schema-style

In XML
schema-style, a regular Spring bean acts as an aspect. A method defined in an
aspect is associated with an advice type and a pointcut expression using
Spring’s aop schema.

IMPORT chapter 9/ch09-aop-xml-schema (The ch09-aop-xml-schema project is same as ch09-aop-advices project, except that ch09-aop-xml-schema’s SampleAspect class is a simple Java class that doesn’t use AspectJ’s
annotations)

The
following example listing shows the SampleAspect class of ch09-aop-xml-schema project that defines advices:

Example listing 9-12 – SampleAspect
class

Project
– ch09-aop-xml-schema

Source location - src/main/java/sample/spring/chapter09/bankapp/aspects

package sample.spring.chapter09.bankapp.aspects;

.....

public class SampleAspect {

 public void
afterReturningAdvice(JoinPoint joinPoint, int aValue) {

 logger.info("Value returned by
" + joinPoint.getSignature().getName()+ " method is " + aValue);

 }

 public void afterThrowingAdvice(JoinPoint
joinPoint, Throwable exception) {

 logger.info("Exception thrown by
" + joinPoint.getSignature().getName()

 + " Exception type is :
" + exception);

 }

}

The above
example listing shows that the SampleAspect class defines methods that represent AOP advices. Notice that the SampleAspect
class is not annotated with @Aspect annotation and the methods are not annotated with @After, @AfterReturning, and so on, annotations.

Let’s now
look at how <config> element of Spring’s aop schema is used to configure a regular Spring bean as an AOP aspect.

Configuring
an AOP aspect

In XML
schema-style, AOP-specific configurations are enclosed within <config>
element of Spring’s aop schema. And, an AOP aspect is configured using <aspect>
sub-element of <config> element.

The
following example listing shows how the SampleAspect class is configured
using <aspect> sub-element of <config> element:

Example listing 9-13 – applicationContext.xml – Spring’s aop schema usage

Project
– ch09-aop-xml-schema

Source location - src/main/resources/META-INF/spring

<beans xmlns:aop="http://www.springframework.org/schema/aop"
..... >

 <bean id="sampleAspect"

 class="sample.spring.chapter09.bankapp.aspects.SampleAspect"
/>

 <aop:config proxy-target-class="false"
expose-proxy="true">

 <aop:aspect
id="sampleAspect" ref="sampleAspect">

 </aop:aspect>

 </aop:config>

</beans>

As the <config>
element relies on autoproxying, the <config> element defines proxy-target-class and expose-proxy attributes. If you remember, the same attributes were defined by <aspectj-autoproxy> element of Spring’s
aop schema. Refer section 9-3 to know more about
proxy-target-class and expose-proxy attributes.

In example
listing 9-13, the sampleAspect bean definition defines SampleAspect class as a bean. The <aspect>
element configures the sampleAspect
bean as an AOP aspect. The <aspect>
element’s id attribute specifies a unique identifier for an aspect, and the ref attribute
specifies the Spring bean that you want to configure as an AOP aspect.

Now, that
we have configured an AOP aspect, let’s look at how to map methods defined in
an AOP aspect to different advice types and pointcut expressions.

Configuring
an advice

You
configure an advice using one of the following sub-elements of <aspect>
element: <before> (for configuring a before advice type), <after-returning> (for configuring an after returning advice
type), <after-throwing> (for configuring an after throwing advice
type), <after> (for configuring an after advice type) and <around>
(for configuring an around advice type).

Let’s now
look at how the advices defined in the SampleAspect class of ch09-aop-xml-schema
project are configured in the application context XML file.

Configuring an after
returning advice

The
following figure shows how the SampleAspect’s afterReturningAdvice method is configured as an after returning advice using <after-returning> element:

Figure 9-12 afterReturningAdvice method of SampleAspect class is configured as an after returning advice using <after-returning> element of Spring’s aop schema

The <after-returning> element’s method attribute specifies the name of the method which you want to
configure as an after
returning advice. The returning
attribute serves the same purpose as the @AfterReturning annotation’s returning
attribute; it makes the returned value from the target method available to the
advice. The pointcut attribute specifies the pointcut expression used for finding the
methods to which the advice is applied.

Configuring an after
throwing advice

The
following figure shows how the SampleAspect’s afterThrowingAdvice method is configured as an after throwing advice using <after-throwing> element:

Figure 9-13 afterThrowingAdvice method of SampleAspect class is configured as an after throwing advice using <after-throwing> element of Spring’s aop schema

The <after-throwing> element’s method attribute specifies the name of the method which you want to
configure as an after
throwing advice. The throwing attribute serves the same
purpose as the @AfterThrowing annotation’s throwing
attribute; it makes the exception thrown by the
target method available to the advice. The pointcut attribute specifies the
pointcut expression used for finding the methods to which the advice is
applied.

The other
advice types (before, after and around) are configured the same way as the after returning and after
throwing advices that we just saw.

Let’s now
look at different ways in which you can associate a pointcut expression with an
advice.

Associating a
pointcut expression with an advice

The <after>,
<after-returning>, <after-throwing>, <before> and <around> elements of Spring’s aop schema define a pointcut
attribute that you can use to specify the pointcut expression associated with
the advice. If you want to share pointcut expressions between different
advices, you can use the <pointcut> sub-element of the <config> element to define pointcut expressions.

The
following example listing shows that the <pointcut> element is used for
defining pointcut expressions:

Example listing 9-14 – application context XML - <pointcut> element

<beans xmlns:aop="http://www.springframework.org/schema/aop"
..... >

 <bean id="sampleAspect"

 class="sample.spring.chapter09.bankapp.aspects.SampleAspect"
/>

 <aop:config
proxy-target-class="false" expose-proxy="true">

 <aop:pointcut
expression="execution(* sample.spring..*Service.*(..))" id="services"
/>

 <aop:aspect
id="sampleAspect" ref="sampleAspect">

 <aop:after
method="afterAdvice" pointcut-ref="services" />

 <aop:around
method="aroundAdvice" pointcut-ref="services"/>

 </aop:aspect>

 </aop:config>

</beans>

In the
above example listing, the <pointcut> element specifies a pointcut expression. The expression
attribute specifies the pointcut expression, and the id attribute
specifies a unique identifier for the pointcut expression. The pointcut
expression defined by a <pointcut> element is referenced by <after>, <after-returning>, and so on, advice type elements using pointcut-ref
attribute. For instance, in the above example listing, <after>
and <around> elements use pointcut-ref attribute to refer to the services pointcut expressions.

9-7 Summary

In this
chapter, we looked at AOP concepts and how Spring AOP can be used to address
cross-cutting concerns in Spring applications. We saw how to create aspects
using AspectJ annotation-style and XML schema-style. We also discussed how to
create and configure different advice types. We touched upon the pointcut
expressions that you can create to find matching methods in the application.
For a more comprehensive coverage of Spring AOP please refer to Spring
reference documentation. In the next chapter, we’ll look at how to develop web
applications using Spring Web MVC module of Spring Framework.

Chapter 10 – Spring Web MVC basics

10-1 Introduction

The Spring
Web MVC module of Spring Framework provides an MVC (Model-View-Controller)
framework that you can use for developing servlet-based web applications.
Spring Web MVC is a non-intrusive framework that provides a clear separation of concerns between application objects that form the web layer. For instance,
a controller object is used for processing the request, a validator object is used for performing validation, and a command object is used for storing form data, and so on. It is important to
note that none of these application objects implement or extend from any
Spring-specific interface or class.

In this
chapter, we’ll first look at the directory structure that will be followed by
all the sample web projects discussed in this chapter. We’ll then look
at a simple ‘Hello World’ web application developed using Spring Web MVC. In
the rest of this chapter, we’ll look at some of the Spring Web MVC annotations
in the context of our MyBank web application. This chapter sets the stage for
discussing more advanced Spring Web MVC features in the next chapter.

IMPORT chapter 10/ch10-helloworld (This project shows a simple ‘Hello
World’ web application that uses Spring Web MVC. Refer appendix A to learn how
to deploy sample web projects on Tomcat server. Once you have deployed the
application, go to the following URL: http://localhost:8080/ch10-helloworld/helloworld/sayhello. If the application is deployed successfully, it will show you ‘Hello World !!’
message.)

10-2 Directory structure of sample web
projects

Figure
10-1 describes the important directories of ch10-helloworld web project. Some of
the important points that you need to remember are:

§ The src/main/resources/META-INF/spring folder contains the root web application context XML file that defines beans that are shared by all the servlets and
filters of the web application. The root web application context XML file typically defines data sources, services, DAOs, transaction
managers, and so on. The root web application context XML file is loaded by
Spring’s ContextLoaderListener (a javax.servlet.ServletContextListener implementation). Refer section 10-10 to learn about how ContextLoaderListener is configured in web.xml file.

§ The src/main/webapp/WEB-INF/spring folder contains the web application context XML file that defines beans that form part of the web layer of the application. The web application context XML file
typically defines controllers (also referred to as handlers), handler
mappings, view resolvers, exception
resolvers, and so on. We’ll learn about these
objects later in this chapter.

§ The
beans defined in the root web application context XML file are available to the beans defined in the web application context XML file. This
means, a bean defined in the web application context XML file can be dependent on a bean defined in the root web
application context XML file, but not the other way round.

Figure 10-1 Directory structure
of ch10-helloworld project

Let’s now
look at the configuration files and the classes that
form the ch10-helloworld project.

10-3
Understanding the ‘Hello World’ web application

If you
right-click on the ch10-helloworld project in your Eclipse IDE and select Build Path à Configure Build Path option, you’ll
notice that the project depends on spring-beans, spring-context,
spring-core, spring-expression, spring-web and spring-webmvc JAR files. These JAR files are required for building a basic Spring
Web MVC application.

The following table describes the configuration files and the Java
source files that constitute the ch10-helloworld project. Later in
this section, we’ll take a closer look at these files and classes.

 	
 Configuration file or Java source file

 	
 Description

 	
 HelloWorldController.java

 	
 Spring Web MVC controller that is responsible for request handling.

 You’ll find this file inside sample.spring.chapter10.web package
 of src/main/java folder.

 	
 helloworld.jsp

 	
 JSP file that shows the ‘Hello World !!’ message

 You’ll find this file inside src/main/webapp/WEB-INF/jsp folder

 	
 myapp-config.xml

 	
 Web application context XML file that contains bean definitions
 for controllers, handler mappings, and so on.

 You’ll find this file inside src/main/webapp/WEB-INF/spring
 folder

 	
 web.xml

 	
 Web application deployment descriptor

 You’ll find this file inside src/main/webapp/WEB-INF folder

Apart from
the files shown in the above table, the ch10-helloworld project also contains
log4j.properties file that contains Log4j configuration, and pom.xml file
that goes as input to the maven build tool. To know more about these files
refer to Log4j (http://logging.apache.org/log4j/1.2/)
and Maven (http://maven.apache.org/index.html)
documentation.

Let’s now
take a closer look at each of the files described in the above table.

HelloWorldController.java – Hello World web application’s controller class

In Spring
Web MVC applications, the request handling logic is contained in controller
classes. The following example listing shows the HelloWorldController controller class
of ch10-helloworld project:

Example listing 10-1 – HelloWorldController class

Project – ch10-helloworld

Source location - src/main/java/sample/spring/chapter10/web

package sample.spring.chapter10.web;

import
org.springframework.web.servlet.ModelAndView;

import
org.springframework.web.servlet.mvc.Controller;

.....

public
class HelloWorldController implements Controller {

 @Override

public ModelAndView handleRequest(HttpServletRequest request,

 HttpServletResponse response) throws
Exception {

 Map<String, String> modelData = new
HashMap<String, String>();

modelData.put("msg", "Hello World !!");

return new ModelAndView("helloworld", modelData);

 }

}

The above
example listing shows that the HelloWorldController class implements Spring’s Controller interface. The Controller interface defines a handleRequest method, which you need to implement to provide the request handling
logic. The handleRequest method returns a ModelAndView object that contains the following information:

§
the data (referred to as model data) to be shown to the user, and

§
logical name of the JSP page (referred to as view) that shows the model data

The model
data is usually represented as a java.util.Map type object, and each
entry in the java.util.Map object represents a model attribute. The name
of the view (the JSP page) to be shown to the user is specified as a String value.

Example
listing 10-1 shows that the
HelloWorldController’s handleRequest
method returns a ModelAndView object that contains helloworld (a String value)
as the view name and modelData (a java.util.Map type object) as the model data. The modelData contains a msg model
attribute whose value is the ‘Hello
World !!’ message. We’ll soon see that the msg model
attribute is used by the helloworld view (a JSP page) to show the ‘Hello World !!’ message to the users.

The
following diagram summarizes how HelloWorldController’s handleRequest
method renders a JSP page:

Figure 10-2 Spring Web MVC
framework invokes the HelloWorldController’s handleRequest method and uses the returned ModelAndView object to render the helloworld.jsp
page

The above
figure shows that the Spring Web MVC framework intercepts an incoming HTTP
request and invokes the HelloWorldController’s handleRequest method. The handleRequest method returns a ModelAndView object that contains the model data and the view information. After
receiving the ModelAndView object from the handleRequest method, the Spring Web MVC framework dispatches the HTTP request to
the helloworld.jsp page and makes the model attributes available to the helloworld.jsp
page as request
attributes.

NOTE
Spring Web MVC makes the model attributes available to the view technology (like
JSP and Velocity) in a format that is suitable for the view technology. For
instance, if you are using JSP as the view technology, model attributes are
made available to the JSP pages as request attributes.

helloworld.jsp – JSP page that shows the ‘Hello World !!’ message

The
following example listing shows the helloworld.jsp page of ch10-helloworld project:

Example listing 10-2 – helloworld.jsp JSP page

Project – ch10-helloworld

Source location - src/main/webapp/WEB-INF/jsp

<%@taglib
uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<c:out value="${msg}"/>

In the
above example listing, <c:out> prints the value of msg request attribute. The msg request attribute refers to the msg model
attribute returned by HelloWorldController’s handleRequest method (refer example listing 10-1). As the value of msg model
attribute is ‘Hello World !!’, helloworld.jsp JSP page shows ‘Hello
World !!’ message.

myapp-config.xml – Web application context XML file

The
following example listing shows the beans configured in myapp-config.xml file of ch10-helloworld project:

Example listing 10-3 – myapp-config.xml

Project – ch10-helloworld

Source location - src/main/webapp/WEB-INF/spring

<beans
xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean name="helloWorldController"

class="sample.spring.chapter10.web.HelloWorldController" />

<bean id="handlerMapping"

class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="urlMap">

<map>

<entry key="/sayhello" value-ref="helloWorldController"
/>

</map>

</property>

</bean>

<bean id="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/jsp/"
/>

<property name="suffix" value=".jsp" />

</bean>

</beans>

The above
example listing shows that apart from the HelloWorldController, Spring’s SimpleUrlHandlerMapping and InternalResourceViewResolver beans are also configured in the myapp-config.xml file.

SimpleUrlHandlerMapping bean (an
implementation of Spring’s HandlerMapping interface) maps an incoming HTTP request to the controller
responsible for handling the request. SimpleUrlHandlerMapping bean uses the
URL path to map a request to a controller. The urlMap property (of type java.util.Map)
specifies URL path to controller bean mapping. In example listing 10-3, the "/sayhello" URL path (specified by the key attribute) is mapped to the HelloWorldController bean (specified by the value-ref attribute). You should note
that the URL path specified by the key attribute is relative to the URL path to which Spring’s DispatcherServlet (a servlet) is
mapped in the web application deployment descriptor. DispatcherServlet is discussed later in this section.

InternalResourceViewResolver bean (an
implementation of Spring’s ViewResolver interface) locates the actual view (like, JSP or servlet) based on
the view name contained in the ModelAndView object. The actual view is located by prepending the value of prefix property and appending the value of suffix property to the view name. The example listing 10-3 shows that the
value of prefix property is /WEB-INF/jsp, and the value of suffix property is .jsp. As the HelloWorldController’s handleRequest method returns a ModelAndView object which contains helloworld as the view name, the
actual view is /WEB-INF/jsp/helloworld.jsp (a string that is obtained by prepending /WEB-INF/jsp
and appending .jsp to the helloworld view name).

The
following figure shows the role played by SimpleUrlHandlerMapping and InternalResourceViewResolver beans in the ‘Hello World’ web application:

Figure 10-3 SimpleUrlHandlerMapping locates the controller to be invoked and InternalResourceViewResolver resolves the actual view based on the view name

SimpleUrlHandlerMapping and InternalResourceViewResolver beans are automatically detected by Spring Web MVC and used for finding the controller for
request handling and resolving views, respectively.

web.xml – Web application deployment
descriptor

In Spring Web MVC based applications, requests are intercepted by a DispatcherServlet (a servlet provided by Spring Web MVC) that is responsible for
dispatching requests to the appropriate controller.

The following example listing shows the configuration of DispatcherServlet in web.xml file of ch10-helloworld project:

Example listing 10-4 – web.xml

Project – ch10-helloworld

Source location - src/main/webapp/WEB-INF/spring

<web-app
xmlns="java.sun.com/xml/ns/javaee"

xmlns:xsi="w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="java.sun.com/xml/ns/javaee java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

version="3.0">

<servlet>

<servlet-name>hello</servlet-name>

<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

<init-param>

<param-name>contextConfigLocation</param-name>

<param-value>/WEB-INF/spring/myapp-config.xml</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>hello</servlet-name>

<url-pattern>/helloworld/*</url-pattern>

</servlet-mapping>

</web-app>

A DispatcherServlet is associated with a web application context XML file which is
identified by the contextConfigLocation servlet initialization parameter. In the above example listing, the
contextConfigLocation initialization parameter refers to the myapp-config.xml file (refer example listing 10-3).

If you
don’t specify the contextConfigLocation parameter, the DispatcherServlet looks for the web application context XML file named <name-of-DispatcherServlet>-servlet.xml file in the WEB-INF directory of the web application. Here, the value of <name-of-DispatcherServlet> is the servlet name specified by the <servlet-name> sub-element of <servlet> that configures the DispatcherServlet.
For instance, if we had not specified the contextConfigLocation parameter in example listing 10-3, the DispatcherServlet would have looked for a file named hello-servlet.xml in the WEB-INF
directory.

The HandlerMapping and ViewResolver beans defined in the web application context XML file are used by
the DispatcherServlet for request processing. DispatcherServlet uses the HandlerMapping
implementation for finding the appropriate controller for the request, and uses
the ViewResolver implementation for resolving the actual view based on the view name
returned by the controller.

In the
context of ‘Hello World’ web application, the following figure summarizes the
role played by the DispatcherServlet servlet in request processing:

Figure 10-4 DispatcherServlet uses HandlerMapping and ViewResolver beans for request processing.

The above
figure shows that the following sequence of activities are performed by Spring
Web MVC during request processing:

§ request
is first intercepted by the DispatcherServlet servlet

§ DispatcherServlet uses the HandlerMapping bean (which is SimpleUrlHandlerMapping bean in case of ‘Hello World’ web application) to find an
appropriate controller for handling the request

§ DispatcherServlet calls the request handling method of the controller (which is HelloWorldController’s handleRequest method in case of ‘Hello World’ web application)

§ DispatcherServlet sends the view name returned by the controller to the ViewResolver
bean (which is InternalResourceViewResolver bean in case of ‘Hello World’ web application) to find the actual
view (JSP or servlet) to be rendered

§ DispatcherServlet dispatches the request to the actual view (JSP or servlet). The
model data returned by the controller are made available to the view as request
attributes.

The
DispatcherServlet
of ‘Hello World’ web application is mapped to /helloworld/*
pattern (refer example listing 10-4), and SimpleUrlHandlerMapping
maps /sayhello
URL path to HelloWorldController bean (refer example
listing 10-3). If you access the URL http://localhost:8080/ch10-helloworld/helloworld/sayhello,
it results
in invocation of handleRequest
method of HelloWorldController
controller. The following figure shows how Spring Web MVC maps the URL http://localhost:8080/ch10-helloworld/helloworld/sayhello
to the HelloWorldController
controller:

Figure 10-5 How the URL path http://localhost:8080/ch10-helloworld/helloworld/sayhello is mapped to the HelloWorldController by Spring Web MVC

In the
above figure, the /ch10-helloworld part of the URL represents the context path of the ‘Hello World’
web application, the /helloworld part of the URL maps to the DispatcherServlet servlet (refer
example listing 10-4), and the /sayhello part of the URL maps to the HelloWorldController controller
(refer example listing 10-3).

In this
section, we saw how a simple ‘Hello World’ web application is developed using
Spring Web MVC. Let’s now take a closer look at the DispatcherServlet servlet that acts a front controller in a
Spring Web MVC application.

10-4 DispatcherServlet – the front controller

In the
previous section, we saw that the DispatcherServlet acts as a front controller that interacts with the HandlerMapping and ViewResolver
beans defined in the web application context XML file to process requests. In
this section, we’ll look at how DispatcherServlet works behind the scenes.

At the
time of initialization, a DispatcherServlet loads the corresponding web application context XML file (which
could be specified via contextConfigLocation initialization parameter, or is named as <name-of-DispatcherServlet>-servlet.xml file and placed in the WEB-INF directory), and creates an
instance of Spring’s WebApplicationContext object. WebApplicationContext is a sub-interface of ApplicationContext interface that
provides features that are specific to web applications. For instance, beans in
the WebApplicationContext can have additional scopes, like request and session. You
can think of WebApplicationContext object as an object that represents a Spring container instance in
Spring Web MVC applications.

The following table describes the additional scopes that you can specify
for beans configured in the web application context XML file:

 	
 Bean
 scope

 	
 Description

 	
 request

 	
 Spring container creates a new
 bean instance for every HTTP request. The bean instance is destroyed by the
 Spring container when the HTTP request completes.

 This scope is valid only for ApplicationContext implementations
 that are applicable in web application scenarios. For instance, if you are
 using XmlWebApplicationContext or AnnotationConfigWebApplicationContext, only then you can specify the request scope for a bean.

 	
 session

 	
 Spring container creates a new
 bean instance when an HTTP Session is created. The bean instance is destroyed by the Spring
 container when the HTTP Session is destroyed.

 This scope is valid only for ApplicationContext implementations
 that are applicable in web application scenarios. For instance, if you are
 using XmlWebApplicationContext or AnnotationConfigWebApplicationContext, only then you can specify the session scope for a bean.

 	
 globalSession

 	
 This scope is applicable only in case of portlet applications.

If your
web application consists of multiple modules, you may define a DispatcherServlet for each of the modules in the web.xml file. In such a scenario,
each DispatcherServlet has its own web application context XML file that contains beans
(like controllers, view resolvers, and so on) specific to that module. You
should note that these beans are not shared between DispatcherServlet instances. The beans that are shared between DispatcherServlet instances are defined in the root web
application context XML file. As mentioned earlier, the root web application context XML file defines data sources, services and
DAOs, and so on, that are typically shared by different modules of a web
application. Refer to section 10-10 to learn about how the root web application
context XML file is loaded.

The following
figure shows relationship between beans defined by the web application context
XML file associated with a DispatcherServlet and the beans defined by the root web application context XML file:

Figure 10-6 Beans in the root WebApplicationContext are inherited by the WebApplicationContext instance
associated with a DispatcherServlet

In the
above figure, servlet1, servlet2 and servlet3 are the names of DispatcherServlet instances configured in the web.xml file. And, servlet1-servlet.xml, servlet2-servlet.xml and servlet3-servlet.xml are web application context XML files that are loaded by servlet1, servlet2 and servlet3,
respectively. When DispatcherServlet instances are initialized, an instance of WebApplicationContext is created corresponding to each servlet1-servlet.xml, servlet2-servlet.xml and servlet3-servlet.xml files and associated with the DispatcherServlet instance. A WebApplicationContext instance is also created corresponding to the root web application context XML file, root-servlet.xml. The beans contained
in the root WebApplicationContext instance are available to all the WebApplicationContext instances
associated with DispatcherServlets.

Let’s now
look at how a controller or any other Spring bean defined in a web application
context XML file can access ServletContext and ServletConfig objects.

Accessing ServletContext and
ServletConfig objects

In some
scenarios, beans defined in the web application context XML file may require
access to the ServletContext or ServletConfig object associated with the web application.

ServletContext is a Servlet API object that a bean can use to communicate with the
servlet container. For instance, you can use it to get and set context
attributes, obtain context initialization parameters, and so on. If a bean
class implements Spring’s ServletContextAware interface (a callback interface), the Spring container provides the
bean instance with an instance of ServletContext object.

ServletConfig is a Servlet API object that a bean can use to obtain configuration
information about the DispatcherServlet
that intercepted the request. For instance, you
can use it to obtain initialization parameters passed to the DispatcherServlet and the name with which the DispatcherServlet is configured in web.xml. If a
bean class implements Spring’s ServletConfigAware interface (a callback interface), the Spring container provides the
bean instance with an instance of ServletConfig object.

The
following example listing shows a bean class that implements ServletContextAware and the ServletConfigAware interface:

Example listing 10-5 – ServletContextAware and ServletConfigAware usage

import
javax.servlet.ServletConfig;

import
javax.servlet.ServletContext;

import
org.springframework.web.context.ServletConfigAware;

import
org.springframework.web.context.ServletContextAware;

public
class ABean implements ServletContextAware, ServletConfigAware {

private ServletContext servletContext;

private ServletConfig servletConfig;

@Override

public void setServletContext(ServletContext servletContext) {

this.servletContext = servletContext;

}

@Override

public void setServletConfig(ServletConfig servletConfig) {

this.servletConfig = servletConfig;

}

public void doSomething() {

//--use ServletContext and ServletConfig objects

}

}

The above
example listing shows that the ABean class implements ServletContextAware and ServletConfigAware interface. The ServletContextAware interface defines a setServletContext method which is invoked by the Spring container to provide ABean instance
with an instance of ServletContext object. The ServletConfigAware interface defines a setServletConfig method which is invoked by the Spring container to provide ABean instance
with an instance of ServletConfig object.

We saw
earlier that you can create a controller by implementing the Controller
interface. Let’s now look at @Controller and @RequestMapping annotations that simplify developing controllers.

10-5 Developing controllers using @Controller and @RequestMapping annotations

Spring Web
MVC provides classes, like MultiActionController, UrlFilenameViewController, AbstractController, and so on, that you can extend to create your controller
implementation. If you extend a Spring-specific class or implement a
Spring-specific interface to create a controller, the controller class becomes
tightly coupled with Spring. Spring 2.5 introduced annotations like @Controller, @RequestMapping, @ModelAttribute, and so on, that allow you to create controllers with flexible
method signatures. In this section, we’ll look at different Spring Web MVC
annotations for developing annotated controllers.

Let’s
first look at a ‘Hello World’ web application that uses an annotated controller
to show the ‘Hello World !!’ message.

IMPORT chapter
10/ch10-annotation-helloworld (This project shows a simple ‘Hello World’ web application that uses
an annotated controller to show ‘Hello World !!’ message. If you deploy the
project on Tomcat server and access the URL http://localhost:8080/ch10-annotation-helloworld/helloworld/saySomething/sayhello, you’ll see the ‘Hello World !!’ message.)

Developing a ‘Hello World’ web application using an annotated
controller

The ch10-annotation-helloworld project is similar to ch10-helloworld, except that the ch10-annotation-helloworld project uses an annotated controller to show ‘Hello World !!’
message. The web.xml and helloworld.jsp files in both the projects are exactly the same, but HelloWorldController.java and myapp-config.xml files are different. For this reason, we’ll restrict our discussion
to HelloWorldController.java and myapp-config.xml files in this section.

Let’s
first look at how to create a controller using @Controller and @RequestMapping annotations.

@Controller and @RequestMapping annotations

You
designate a particular class as a Spring Web MVC controller by annotating it
with @Controller annotation. And, you use @RequestMapping annotation to map an
incoming request to the appropriate method of a controller.

The
following example listing shows the HelloWorldController class that uses @Controller
and @RequestMapping annotations:

Example listing 10-6 – HelloWorldController class - @Controller and @RequestMapping usage

package
sample.spring.chapter10.web;

import
org.springframework.stereotype.Controller;

import
org.springframework.web.bind.annotation.RequestMapping;

import
org.springframework.web.servlet.ModelAndView;

.....

@Controller(value="sayHelloController")

@RequestMapping("/saySomething")

public
class HelloWorldController {

@RequestMapping("/sayhello")

public ModelAndView sayHello() {

 Map<String, String> modelData = new HashMap<String, String>();

 modelData.put("msg", "Hello World !!");

 return new ModelAndView("helloworld", modelData);

 }

}

In the
above example listing, the HelloWorldController class is annotated with @Controller and @RequestMapping annotations, and the sayHello method is annotated with @RequestMapping annotation. @Controller annotation is a specialized form of @Component annotation (refer chapter
6) that indicates that the HelloWorldController is a controller component.

Like @Service
(refer chapter 6) and @Repository (refer chapter 7) annotated classes, @Controller annotated classes are
automatically registered with the Spring container; you don’t need to
explicitly define a @Controller annotated class in the web application context XML file. The value
attribute of @Controller annotation specifies the name with which the class is registered
with the Spring container. The value attribute serves the same purpose as the <bean>
element’s id attribute. If the value attribute is not specified, the name (beginning with lowercase
first letter) of the class is used to register the class with the Spring
container.

@RequestMapping annotation maps
incoming web requests to appropriate controllers and/or controller methods. @RequestMapping annotation at the type-level maps a request to the appropriate
controller. For instance, @RequestMapping("/saySomething") on HelloWorldController class indicates that all requests to /saySomething request path are
handled by the HelloWorldController controller.

@RequestMapping at the method-level narrows down the @RequestMapping at the type-level to
a specific method in the controller class. For instance, @RequestMapping("/sayhello") annotation on sayHello method in example listing 10-6 specifies that the sayHello
method is invoked when the request path is /saySomething/sayhello. Notice that
the HelloWorldController’s sayHello method doesn’t accept any arguments and returns a ModelAndView
object. This is possible because annotated controllers can have flexible method
signatures. In section 10-7, we’ll look at possible
arguments and return types @RequestMapping annotated methods can define.

@RequestMapping annotation at the type-level usually specifies a request path or a
path pattern. And, @RequestMapping annotation at the method-level usually specifies an HTTP method or
a request parameter to further narrow down the mapping specified by the
type-level @RequestMapping annotation. The following figure shows how http://localhost:8080/ch10-annotation-helloworld/helloworld/saySomething/sayhello URL will result in invocation of HelloWorldController’s sayHello
method by Spring Web MVC:

Figure 10-7
How a request URL is mapped to an appropriate @RequestMapping
annotated method of a controller

The
above figure shows how a particular request URL results in invocation of HelloWorldController’s
sayHello
method.

Let’s
now look at how annotation-driven development of Spring Web MVC controllers is
enabled in an application.

Enabling Spring Web MVC
annotations

To use
annotated controllers in your Spring Web MVC application, you need to enable
Spring Web MVC annotations using <annotation-driven> element of Spring’s mvc schema, as shown in the following example listing:

Example listing 10-7 – myapp-config.xml

Project – ch10-annotation-helloworld

Source location - src/main/webapp/WEB-INF/spring

<beans
.....

xmlns:mvc="http://www.springframework.org/schema/mvc"

xsi:schemaLocation=".....http://www.springframework.org/schema/mvc

http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd.....">

<mvc:annotation-driven />

<context:component-scan base-package="sample.spring.chapter10.web"
/>

 <bean
id="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

</beans>

In the
above example listing, <mvc:annotation-driven> element of Spring’s mvc schema enables use of Spring Web MVC annotations in implementing
controllers. Also, <component-scan> element (refer section 6-2 for more details) of context schema
is used to automatically register @Controller annotated classes with
the Spring container.

In this
section, we saw how to develop a simple ‘Hello World’ web application using @Controller
and @RequestMapping annotations. Let’s now look at the requirements of the MyBank web
application that we’ll develop in this chapter using Spring Web MVC
annotations.

10-6 MyBank web application’s
requirements

The
following figure shows the home page of MyBank web application that displays a
list of currently active fixed deposits in the system:

Figure 10-8 MyBank web
application’s home page shows fixed deposit details. The web page provides the
option to close, edit and create a fixed deposit.

In the
above figure, the ID column shows the unique identifier for a fixed deposit. The ID value is
assigned to a fixed deposit when it is created by a user. Close and Edit
hyperlinks allow a user to remove or edit details of a fixed deposit. The Create new Fixed Deposit button shows the ‘Open
fixed deposit’ form for entering details of the
fixed deposit to be opened, as shown in the following figure:

Figure 10-9 ‘Open fixed deposit’ form for opening fixed deposits. Amount, Tenure and Email fields
are mandatory.

In
the above figure, clicking the Save button saves the
fixed deposit details in the data store, and Go Back
hyperlink takes the user back to the web page that shows the fixed deposit list
(refer figure 10-8). The above figure shows that appropriate error messages are
displayed if the entered data doesn’t meet the constraints set on Amount,
Tenure
and Email
fields.

When
you click the Edit hyperlink in figure 10-8, a form
similar to figure 10-9 is shown for modifying details of the selected fixed
deposit. And, clicking the Close hyperlink in figure
10-8 removes the selected fixed deposit from the list of fixed deposits.

Now, that
we know the MyBank web application requirements, let’s look at how we implement
it using Spring Web MVC annotations.

10-7 Spring Web MVC annotations - @RequestMapping and @RequestParam

In
section 10-5, we saw that we can use @Controller and
@RequestMapping
annotations to develop a simple controller. In this section, we’ll take a
closer look at @RequestMapping and other Spring Web MVC
annotations that simplify developing annotated controllers.

IMPORT chapter
10/ch10-bankapp (This project shows the MyBank web application that allows its user
to manage fixed deposits. If you deploy the project on Tomcat server and access
the URL http://localhost:8080/ch10-bankapp, you’ll see the list of fixed deposits (as shown in figure 10-8) in
the system.)

Let’s
begin by looking at the @RequestMapping
annotation.

Mapping requests to controllers or controller methods
using @RequestMapping

In section
10-5, we saw that the @RequestMapping annotation is used at the type and
method-level to map requests to controllers and
its methods. In this section, we’ll first look at how Spring
Web MVC maps a web request to a particular controller method that uses @RequestMapping annotation. We’ll then look at the attributes of @RequestMapping annotation, and the arguments and return types that @RequestMapping annotated methods can have.

@RequestMapping annotation and RequestMappingHandlerMapping

The
following example listing shows @RequestMapping annotation usage in SomeController
(a Spring Web MVC controller) class:

Example listing 10-8 – SomeController
class - @RequestMapping usage

@Controller

@RequestMapping("/type_Level_Url")

public class SomeController
{

@RequestMapping("/methodA_Url")

 public
ModelAndView methodA() { }

@RequestMapping("/methodB_Url")

 public
ModelAndView methodB() { }

}

The <annotation-driven> element of Spring’s mvc schema creates an instance of RequestMappingHandlerMapping (a HandlerMapping
implementation) that is responsible for mapping a web request to an appropriate
@RequestMapping annotated method. RequestMappingHandlerMapping considers controller
methods as endpoints, and is responsible for uniquely mapping a request to a controller method based on the @RequestMapping annotations at type- and method-level. In case of SomeController,
if the request path is /type_Level_Url/methodA_Url, methodA is invoked, and if the request path is /type_Level_Url/methodB_Url, methodB is invoked. You should note that if a request cannot be mapped
uniquely to a controller method, then a HTTP 404 (which means, resource not
found) status code is returned.

The
attributes of @RequestMapping annotation are used to
narrow down the mapping of a request to a particular controller or a controller
method. You can specify these attributes at both type- and method-level @RequestMapping
annotations. Let’s now look at the attributes of @RequestMapping
annotation.

Mapping requests based on
request path

@RequestMapping’s value attribute specifies the request path to which a controller or
controller method is mapped. You can specify the request path without
explicitly specifying the value attribute in the @RequestMapping annotation. For instance, you can specify @RequestMapping(value =
"/type_Level_Url") as @RequestMapping("/type_Level_Url").

You can
also specify Ant-style path patterns as the value of value
attribute. For instance, you can specify patterns, like /myUrl/*, /myUrl/** and /myUrl/*.do,
as the value of value attribute. The following example listing shows a @RequestMapping annotation that specifies /myUrl/** as the path pattern:

Example listing 10-9 – SomeController
class – Ant-style request path pattern usage

@Controller

@RequestMapping("/myUrl/**")

public
class SomeController { }

In the
above example listing, @RequestMapping("/myUrl/**") annotation at the type-level specifies that the SomeController
controller handles all requests that begin with /myUrl path. For instance, requests
to /myUrl/abc, /myUrl/xyz and /myUrl/123/something paths are handled by SomeController controller.

Mapping requests based on
HTTP methods

@RequestMapping’s
method
attribute specifies the HTTP method that is handled by the controller or
controller method. So, if the method attribute specifies
an HTTP GET
method, the controller or the controller method handles only
HTTP GET
requests.

The
following example listing shows the FixedDepositController’s
listFixedDeposits
method that is responsible for rendering the list of fixed deposits in the
system:

Example listing 10-10 – @RequestMapping’s method attribute usage

Project – ch10-bankapp

Source location - src/main/java/sample/spring/chapter10/web

package
sample.spring.chapter10.web;

import
org.springframework.web.bind.annotation.RequestMethod;

.....

@Controller

@RequestMapping(value="/fixedDeposit")

public
class FixedDepositController {

.....

@RequestMapping(value = "/list", method = RequestMethod.GET)

public ModelAndView listFixedDeposits() { }

.....

}

In the
above example listing, @RequestMapping annotation on the listFixedDeposits method specifies value of method attribute as RequestMethod.GET. The RequestMethod
is an enum that defines HTTP request methods, like GET, POST, PUT, DELETE, and so
on. As the value of the method attribute is RequestMethod.GET, the listFixedDeposits method is invoked only if an HTTP GET request is sent to /fixedDeposit/list path. For instance, if you send an HTTP POST request
to /fixedDeposit/list path, application will return an HTTP 405 (which means, the HTTP
method is not supported) status code.

You can
also specify an array of HTTP methods as the value of method
attribute, as shown in the following example listing:

Example listing 10-11 – Specifying multiple
HTTP methods as the value of method attribute

@Controller

@RequestMapping(value="/sample")

public class MyController
{

 @RequestMapping(value
= "/action" method={ RequestMethod.GET, RequestMethod.POST })

 public
ModelAndView action() { }

}

In the
above example listing, the action method is annotated with @RequestMapping annotation whose method
attribute’s value is {
RequestMethod.GET, RequestMethod.POST }. This
means that the action method is invoked if an HTTP GET or POST request is sent to /sample/action
path.

Mapping requests based on
request parameters

@RequestMapping’s
params
attribute typically specifies the name and value of the request parameter that must
be present in the request. The following example listing shows the FixedDepositController’s
showOpenFixedDepositForm
method that is responsible for showing the form for creating a fixed deposit:

Example listing 10-12 – @RequestMapping’s params attribute usage

Project – ch10-bankapp

Source
location - src/main/java/sample/spring/chapter10/web

package
sample.spring.chapter10.web;

import
org.springframework.web.bind.annotation.RequestMethod;

.....

@Controller

@RequestMapping(value="/fixedDeposit")

public
class FixedDepositController {

.....

@RequestMapping(params = "fdAction=createFDForm", method =
RequestMethod.POST)

 public
ModelAndView showOpenFixedDepositForm() { }

}

In the
above example listing, @RequestMapping annotation on the showOpenFixedDepositForm method specifies the value of params attribute as fdAction=createFDForm. As the FixedDepositController is mapped to /fixedDeposit path, the showOpenFixedDepositForm method is invoked if an HTTP POST request containing request
parameter named fdAction with value createFDForm is sent to /fixedDeposit path.

If you
want to map requests to a controller or controller method based on the values
of multiple request parameters, you can specify an array of request parameter
name-value pairs as the value of params attribute, as shown in the
following example listing:

Example listing 10-13 – Specifying
multiple request parameter name-value pairs as the value of params
attribute

@RequestMapping(params = { "x=a", "y=b" })

public void perform() { }

In the
above example listing, the perform method is invoked only if the request contains parameters named x and y with values a and b,
respectively.

You can also
map requests to a controller or controller method based on the existence of a request
parameter in the request. All you need to do is to simply specify the name of
the request parameter as the value of params attribute. For instance, the perform method
shown here is invoked irrespective of the value of request parameter x:

Example listing 10-14 – perform method
is invoked if request parameter x is found

@RequestMapping(params = "x")

public void perform() { }

To map
requests to a controller or controller method if a request parameter does not exist, use the ! operator. For example, the following perform method is invoked if request parameter
named x is not found in the request:

Example listing 10-15 – perform method
is invoked if request parameter x is not
found

@RequestMapping(params = "!x")

public void perform() { }

You can
use != operator to map requests to a controller or controller method if
the value of a request parameter is not
equal to the specified value, as shown here:

Example listing 10-16 – perform method
is invoked if the value of request parameter x is not equal to a

@RequestMapping(params = "x != a")

public void perform() { }

In the
above example listing, perform method is invoked only if the request contains a request parameter
named x, and the value of x is not
equal to a.

Mapping requests based on
the MIME type of the request

The Content-Type
request header specifies the MIME type of the request. @RequestMapping’s consumes attribute specifies the MIME type of the request that a controller
or a controller method handles. So, if the value of consumes
attribute matches the value of the Content-Type request header, the
request is mapped to that particular controller or controller method.

The
following example listing shows that the perform method is invoked if the Content-Type
request header’s value is application/json:

Example listing 10-17 – perform method
is invoked if the value of Content-Type header is application/json

@RequestMapping(consumes = "application/json")

public void perform() { }

As with the
params attribute, you can use ! operator to specify the condition
that a Content-Type header value is not present. For instance, the following perform method is invoked if the Content-Type
header’s value is not application/json:

Example listing 10-18 – perform method
is invoked if the value of Content-Type header is not application/json

@RequestMapping(consumes = "!application/json")

public void perform() { }

You can
specify an array of values in the consumes attribute, in which case the
request is mapped to the controller or the controller method if the Content-Type
value matches one of the values specified by the consumes attribute. In the following
example listing, the perform method is invoked if the Content-Type is application/json or text/plain:

Example listing 10-19 – perform method
is invoked if Content-Type is application/json or text/plain

@RequestMapping(consumes = { "application/json", "text/plain")

public void perform() { }

Mapping requests based on
the acceptable MIME type of the response

The Accept request
header specifies the acceptable MIME type of the response. @RequestMapping’s produces attribute specifies the acceptable MIME type of the response. So,
if the value of produces attribute value matches the Accept request header, the request is
mapped to that particular controller or controller method.

The
following example listing shows that the perform method is invoked if the Accept request
header’s value is application/json:

Example listing 10-20 – perform method
is invoked if the value of Accept
header is application/json

@RequestMapping(produces = "application/json")

public void perform() { }

As with
the consumes attribute, you can use ! operator to specify the condition
that an Accept header value is not present in the request. If you specify an array of values for the produces attribute,
request is mapped to the controller or the controller method if the Accept header
value matches one of the values specified by the produces attribute.

Mapping requests based on
a request header value

To map
requests based on request headers, you can use @RequestMapping’s headers attribute. The following example listing shows that the request is
mapped to the perform method if the value of Content-Type header is text/plain:

Example listing 10-21 – perform method
is invoked if the value of Content-Type
header is text/plain

 @RequestMapping(headers
= "Content-Type=text/plain")

public void perform() { }

As with
the params attribute, you can use ! and != operators while specifying value
of headers attribute. For instance, the following example listing shows that
the request is mapped to the perform method if the value of Content-Type header is not equal to application/json, the Cache-Control header doesn’t
exist in the request, and the From header exists in the request with any value:

Example listing 10-22 – Using ! and != operators
for specifying value of headers attribute

@RequestMapping(headers = { "Content-Type != application/json", "!Cache-Control",
"From"})

public void perform() { }

Now, that
we have looked at the attributes of @RequestMapping annotation, let’s
look at the arguments that you can pass to @RequestMapping annotated methods.

@RequestMapping annotated
methods arguments

@RequestMapping annotated methods can
have flexible method signatures. The argument types that can be passed to @RequestMapping annotated methods include HttpServletRequest, HttpSession, java.security.Principal, org.springframework.validation.BindingResult, org.springframework.web.bind.support.SessionStatus, org.springframework.ui.Model, and so on. To view a complete list of arguments that can be passed
to @RequestMapping annotated method, please refer to @RequestMapping Javadoc.

As we
discuss different Spring Web MVC features in this book, we’ll come across
scenarios which require us to pass different argument types to @RequestMapping annotated methods. For now, we’ll look at a scenario in which we
need to send HttpServletRequest object as an argument.

The
following example listing shows the FixedDepositController’s viewFixedDepositDetails method that accepts an argument of type HttpServletRequest:

Example listing 10-23 – FixedDepositController class - passing HttpServletRequest argument

Project – ch10-bankapp

Source
location - src/main/java/sample/spring/chapter10/web

package
sample.spring.chapter10.web;

import
javax.servlet.http.HttpServletRequest;

.....

public class
FixedDepositController {

@RequestMapping(params = "fdAction=view", method = RequestMethod.GET)

 public
ModelAndView viewFixedDepositDetails(HttpServletRequest request) {

FixedDepositDetails fixedDepositDetails = fixedDepositService

.getFixedDeposit(Integer.parseInt(request.getParameter("fixedDepositId")));

 }

}

The viewFixedDepositDetails method is invoked when you click the Edit hyperlink corresponding to a
fixed deposit (refer figure 10-8). HttpServletRequest is used by the viewFixedDepositDetails method to obtain the fixedDepositId request parameter that
uniquely identifies a fixed deposit in the system.

Let’s now
look at the return types that are supported for @RequestMapping annotated methods.

@RequestMapping annotated
methods return types

The
supported return types for @RequestMapping annotated methods include ModelAndView, org.springframework.web.servlet.View, String, java.util.concurrent.Callable, void, and so on. To view a complete list of return types supported for @RequestMapping annotated methods, please refer to @RequestMapping Javadoc.

As we
discuss different Spring Web MVC features in this book, we’ll come across
scenarios which require @RequestMapping annotated methods to have different return types. In this section,
we’ll only look at examples that show methods that have String or ModelAndView
as return types.

The
following example listing shows FixedDepositController’s showOpenFixedDepositForm method that renders the HTML form for opening a new fixed deposit
(refer figure 10-9):

Example listing 10-24 – FixedDepositController class - ModelAndView return type example

Project – ch10-bankapp

Source location - src/main/java/sample/spring/chapter10/web

package
sample.spring.chapter10.web;

import
org.springframework.ui.ModelMap;

.....

public class
FixedDepositController {

@RequestMapping(params = "fdAction=createFDForm", method =
RequestMethod.POST)

 public ModelAndView
showOpenFixedDepositForm() {

 FixedDepositDetails
fixedDepositDetails = new FixedDepositDetails();

 fixedDepositDetails.setEmail("You
must enter a valid email");

 ModelMap
modelData = new ModelMap();

 modelData.addAttribute(fixedDepositDetails);

 return
new ModelAndView("createFixedDepositForm", modelData);

 }

}

The showOpenFixedDepositForm method returns a ModelAndView object that contains an instance of FixedDepositDetails as a model
attribute and createFixedDepositForm string value as the view name.

If you
compare the above example listing with 10-1 and 10-6, you’ll notice that the showOpenFixedDepositForm method uses Spring’s ModelMap object instead of java.util.Map to store model attributes. ModelMap is an implementation of java.util.Map
interface that allows you to store model attributes without explicitly
specifying their names. ModelMap automatically generates the name of the model attribute based on a pre-defined
strategy. For instance, if you add a custom Java object as a model attribute,
the name (beginning with lowercase first letter) of the object’s class is used
as the name of the model attribute. In the above example listing, when an
instance of FixedDepositDetails is added to the ModelMap, it is stored in the ModelMap with the name fixedDepositDetails.

When a @RequestMapping annotated method returns a string value, it is considered as the
name of the view that is resolved to an actual view (like, JSP page or servlet)
by the ViewResolver configured for the web application. The following example listing
shows the configuration of InternalResourceViewResolver in ch10-bankapp project:

Example listing 10-25 – bankapp-config.xml – ViewResolver configuration

Project – ch10-bankapp

Source location - src/main/webapp/WEB-INF/spring

 <bean
id="viewResolver"

class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/jsp/" />

<property name="suffix" value=".jsp" />

</bean>

The above
configuration suggests that when a string value xyz is returned, it is resolved to /WEB-INF/jsp/xyz.jsp. Refer section 10-3 to learn more about the InternalResourceViewResolver configuration shown above.

If the
string value returned by the @RequestMapping annotated method has the prefix redirect:, it is treated as a
redirect URL and not as a view name. The following example listing shows FixedDepositController’s closeFixedDeposit method that is responsible for closing a fixed deposit when a user
clicks the Close button (refer figure 10-9):

Example listing 10-26 – FixedDepositController class - String return type example

Project – ch10-bankapp

Source location - src/main/java/sample/spring/chapter10/web

 @RequestMapping(params
= "fdAction=close", method = RequestMethod.GET)

 public
String closeFixedDeposit(..... int fdId) {

fixedDepositService.closeFixedDeposit(fdId);

 return
"redirect:/fixedDeposit/list";

}

FixedDepositController’s closeFixedDeposit method closes the fixed deposit identified by the fdId argument
and returns redirect:/fixedDeposit/list string value. As the returned string value is prefixed with redirect:, the
user is redirected to the /fixedDeposit/list URL that shows the list of fixed deposits (refer figure 10-8).

Let’s now
look at the @RequestParam annotation that allows you to assign a request parameter value to a
controller method argument.

Passing request parameters to controller methods using @RequestParam

We saw in
example listing 10-23 that we can pass HttpServletRequest object to a
controller method and use it to retrieve request parameters. Instead of passing
HttpServletRequest object to a controller method, you can annotate a method argument
with @RequestParam annotation to assign value of a request parameter to the method
argument.

NOTE
You should note that the @RequestParam annotation can only be used if the method is annotated
with @RequestMapping or @ModelAttribute (explained in chapter 11) annotation.

The
following example listing shows FixedDepositController’s closeFixedDeposit method that is invoked when a user clicks the Close button
(refer figure 10-8) to close a fixed deposit:

Example listing 10-27 – FixedDepositController class - @RequestParam usage

Project – ch10-bankapp

Source location - src/main/java/sample/spring/chapter10/web

package
sample.spring.chapter10.web;

import
org.springframework.web.bind.annotation.RequestParam;

.....

public class
FixedDepositController {

@RequestMapping(params = "fdAction=close", method =
RequestMethod.GET)

 public
String closeFixedDeposit(@RequestParam(value = "fixedDepositId")
int fdId) {

fixedDepositService.closeFixedDeposit(fdId);

 return
"redirect:/fixedDeposit/list";

 }

}

@RequestParam’s value
attribute specifies the name of the request parameter whose value is assigned
to the method argument. In the above example listing, @RequestParam
annotation is used to assign the value of fixedDepositId request parameter to fdId method
argument. As the type of the fdId argument is int, Spring is responsible for converting the fixedDepositId
request parameter to int type. By default, Spring automatically provides type conversion for
simple Java types, like int, long, java.util.Date, and so on. To convert request parameters to custom Java types
(like Address), you need to register custom PropertyEditors with Spring’s WebDataBinder
instance or org.springframework.format.Formatters with Spring’s FormattingConversionService instance. We’ll learn more about WebDataBinder in chapter 11, and Formatter and FormattingConversionService in chapter 13.

Let’s now
look at how you can access all the request parameters in a controller method.

Passing all the request
parameters to a controller method

To pass all the request parameters to a controller method, define an argument
of type Map<String,
String> or MultiValueMap<String, String> (an object provided by Spring that implements java.util.Map
interface) and annotate it with @RequestParam annotation.

The
following example listing shows FixedDepositController’s openFixedDeposit method that creates a fixed deposit when a user enters fixed
deposit details and clicks the Save button on the ‘Open
fixed deposit’ form for opening fixed deposits
(refer figure 10-9):

Example listing 10-28 – FixedDepositController class – accessing all request parameters

Project – ch10-bankapp

Source location - src/main/java/sample/spring/chapter10/web

package sample.spring.chapter10.web;

import
java.util.Map;

.....

@RequestMapping(value
= "/fixedDeposit")

public class
FixedDepositController {

@RequestMapping(params = "fdAction=create", method =
RequestMethod.POST)

 public
ModelAndView openFixedDeposit(@RequestParam Map<String, String> params)
{

 String
depositAmount = params.get("depositAmount");

 String
tenure = params.get("tenure");

 }

}

In the
above example listing, params argument of type Map<String,
String> is annotated with @RequestParam
annotation. Notice that the value attribute of @RequestParam annotation is not specified. If @RequestParam’s value attribute is not specified and the type of the method argument is Map<String, String> or MultiValueMap<String,
String>, Spring copies all the requests
parameters into the method argument. Each request parameter’s value is stored
in the Map (or MultiValueMap) with the name of the request parameter as the key.

The
following example listing shows FixedDepositController’s editFixedDeposit method that is responsible for making changes to an existing fixed
deposit:

Example listing 10-29 – FixedDepositController class – accessing all request parameters

Project – ch10-bankapp

Source location - src/main/java/sample/spring/chapter10/web

package
sample.spring.chapter10.web;

import
org.springframework.util.MultiValueMap;

.....

public class
FixedDepositController {

@RequestMapping(params = "fdAction=edit", method =
RequestMethod.POST)

 public
ModelAndView editFixedDeposit(@RequestParam MultiValueMap<String,
String> params) {

 String
depositAmount = params.get("depositAmount").get(0);

 String
tenure = params.get("tenure").get(0);

 }

}

In the
above example listing, editFixedDeposit’s params argument is of type MultiValueMap<String,
String>, and is annotated with @RequestParam
annotation. If an object is of type MultiValueMap<K, V>, then it
means that K is the type of the key and List<V> is the type of the
value. As the params argument is of type MultiValueMap<String,
String>, it means that the key is of type String and the
value is of type List<String>. When storing request parameters in MultiValueMap<String, String>
type, Spring uses request parameter’s name as key and the value of the request
parameter is added to the List<String> value. MultiValueMap is particularly useful if you have multiple request parameters with
the same name.

As the
value corresponding to a request parameter is of type List<String>, calling params.get(String
key) returns a List<String> type. For this
reason, get(0) is called on the returned List<String> to get the value
of request parameters depositAmount, tenure, and so on. Alternatively, you can use getFirst(String key) method of MultiValueMap
to obtain the first element from the List<String> value.

Let’s now
take a closer look at the various attributes of @RequestParam annotation.

Specifying request
parameter name using value attribute

We saw
earlier that @RequestParam’s value attribute specifies the name of the request parameter whose value
is assigned to the method argument. If you don’t specify the name of a request
parameter, method argument name is considered as the name of the request
parameter name. For instance, in the following example listing, value of
request parameter named param is assigned to the param argument:

Example listing 10-30 – @RequestParam usage
- unspecified request parameter name

@RequestMapping(.....)

public String doSomething(@RequestParam String param) { }

In the
above example listing, @RequestParam doesn’t specify the name of the request parameter whose value is
assigned to the param argument; therefore, param is considered as the name of
the request parameter.

Specifying request
parameter is optional or mandatory by using required
attribute

By
default, request parameter specified by the @RequestParam annotation is mandatory; if the specified request parameter is not
found in the request, an exception is thrown. You can specify that the request
parameter is optional by setting the value of required attribute to false, as
shown here:

Example listing 10-31 – @RequestParam’s
required attribute

@RequestMapping(.....)

public String perform(@RequestParam(value = "myparam", required =
false)
String param) { }

In the
above example listing, @RequestParam’s required attribute value is set to false, which means that the myparam
request parameter is optional. Now, if the myparam request parameter is not
found in the request, it’ll not result in an exception. Instead, a null value is
assigned to the param method argument.

Specifying default
value for a request parameter using defaultValue attribute

@RequestParam’s defaultValue
attribute specifies the default value for a request parameter. If the request
parameter specified by @RequestParam’s value attribute is not found in the request, the value specified by the defaultValue
attribute is assigned to the method argument. The following example listing
shows usage of defaultValue attribute:

Example listing 10-32 – @RequestParam’s
defaultValue attribute

@RequestMapping(.....)

 public
String perform(@RequestParam(value = "location", defaultValue = "earth") String param) {

}

In the
above example listing, if request parameter named location is
not found in the request, the value earth is assigned to the param method
argument.

In this
section, we looked at @RequestMapping and @RequestParam annotations to create the FixedDepositController of MyBank
application. Let’s now look at how validation of form data is performed in the FixedDepositController class.

10-8 Validation

We saw
earlier that FixedDepositController’s showOpenFixedDepositForm
method (refer example listing 10-24) renders createFixedDepositForm.jsp JSP page that shows the form for opening a new fixed deposit. When
the form is submitted, the data entered in the form is validated by FixedDepositController’s openFixedDeposit method (refer example listing 10-28). If errors are reported during
validation, the createFixedDepositForm.jsp JSP page is rendered again with validation error messages and the
original form data that was entered by the user (refer figure 10-9).

The
following example listing shows the <form> element of createFixedDepositForm.jsp JSP page:

Example listing 10-33 – createFixedDepositForm.jsp – <form> element

Project – ch10-bankapp

Source location - src/main/webapp/WEB-INF/jsp

<form
name="createFixedDepositForm" method="POST"

 action="${pageContext.request.contextPath}/fixedDeposit?fdAction=create">

.....

 <input
type="submit" value="Save" />

</form>

In the
above example listing, <form> element’s method attribute specifies POST as the HTTP method, and action attribute specifies /fixedDeposit?fdAction=create as the URL to which the form is submitted when the user clicks the Save button.
Submission of the form results in the invocation of FixedDepositController’s openFixedDeposit method.

The
following example listing shows how the validation is performed by the openFixedDeposit method, and how the original form data entered by the user is shown
again in case of validation errors:

Example listing 10-34 – FixedDepositController’s openFixedDeposit method

Project – ch10-bankapp

Source location - src/main/java/sample/spring/chapter10/web

package
sample.spring.chapter10.web;

.....

import
org.apache.commons.lang3.math.NumberUtils;

@RequestMapping(value
= "/fixedDeposit")

public class
FixedDepositController {

 @RequestMapping(params
= "fdAction=create", method = RequestMethod.POST)

 public
ModelAndView openFixedDeposit(@RequestParam Map<String, String> params) {

 String depositAmount
= params.get("depositAmount");

 Map<String,
Object> modelData = new HashMap<String, Object>();

 if
(!NumberUtils.isNumber(depositAmount)) {

 modelData.put("error.depositAmount",
"enter a valid number");

 } else
if (NumberUtils.toInt(depositAmount) < 1000) {

 modelData.put("error.depositAmount",
"must be greater than or equal to 1000");

 }

 FixedDepositDetails
fixedDepositDetails = new FixedDepositDetails();

 fixedDepositDetails.setDepositAmount(depositAmount);

 if
(modelData.size() > 0) { // --this means there are validation errors

 modelData.put("fixedDepositDetails",
fixedDepositDetails);

return new ModelAndView("createFixedDepositForm", modelData);

 } else {

 fixedDepositService.saveFixedDeposit(fixedDepositDetails);

return new ModelAndView("redirect:/fixedDeposit/list");

 }

 }

}

The openFixedDeposit method validates deposit amount, tenure and email information
entered by the user. Notice that to simplify validation of data, NumberUtils
class of Apache Commons Lang (http://commons.apache.org/proper/commons-lang/)
library has been used. The modelData variable is a java.util.Map object that stores model attributes that we want to pass to the createFixedDepositForm.jsp JSP page in case of validation errors.

As we want
to show validation error messages and the original form data if validation fails,
the validation error messages and the original form data are stored in modelData. For
instance, if the deposit amount entered by the user fails validation, an
appropriate validation error message is stored in the modelData with
name error.depositAmount. The values entered by the user are set on a new instance of FixedDepositDetails object. If validation errors are reported, the newly created FixedDepositDetails instance is added to the modelData with name fixedDepositDetails, and the createFixedDepositForm.jsp JSP page is rendered. Alternatively, if no validation errors are
reported, the newly created FixedDepositDetails object is saved in the data source, and the page that shows the
complete list of fixed deposits is rendered.

As we are
using FixedDepositDetails object to store the original form data entered by the user, all the
attributes of FixedDepositDetails have been defined of type String, as shown here:

Example listing 10-35 – FixedDepositDetails class

Project – ch10-bankapp

Source location - src/main/java/sample/spring/chapter10/domain

package
sample.spring.chapter10.domain;

public class
FixedDepositDetails {

 private
long id; //-- id value is set by the system

 private
String depositAmount;

 private
String tenure;

 private
String email;

 //--getters
and setters for fields

}

As depositAmount
and tenure fields are defined of type String, we had to write extra logic
to convert them into numeric values for performing numerical comparisons. In
chapter 11, we’ll look at how Spring Web MVC simplifies binding form data to form backing objects (like FixedDepositDetails)
and re-displaying the original form data in case
of validation errors.

The
following fragments from the createFixedDepositForm.jsp JSP page demonstrate how validation error messages and the original
form data are displayed in the MyBank application:

Example listing 10-36 – createFixedDepositForm.jsp

Project – ch10-bankapp

Source location - src/main/webapp/WEB-INF/jsp

<%@taglib
uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<form
name="createFixedDepositForm" method="POST"

action="${pageContext.request.contextPath}/fixedDeposit?fdAction=create">

.....

 <td
class="td">Amount (in USD):</td>

<td class="td">

<input type="text" name="depositAmount"

value="${requestScope.fixedDepositDetails.depositAmount}"/>

<c:out value="${requestScope['error.depositAmount']}"/>

</td>

.....

 <input
type="submit" value="Save" />

</form>

In the
above example listing, the value of depositAmount form field is specified
as ${requestScope.fixedDepositDetails.depositAmount}. In the openFixedDeposit method (refer example listing 10-34), we added a FixedDepositDetails instance as a model attribute named fixedDepositDetails; therefore, the ${requestScope.fixedDepositDetails.depositAmount} expression shows the original value that the user entered for the depositAmount
field.

The
expression ${requestScope['error.depositAmount']} refers to the error.depositAmount request attribute. In the openFixedDeposit method (refer
example listing 10-34), we saw that the error.depositAmount contains
validation error message corresponding to the fixed deposit amount entered by
the user; therefore, the <c:out
value= "${requestScope['error.depositAmount']}"/> element shows the validation error message corresponding to the fixed
deposit amount entered by the user.

Let’s now
look at how to handle exceptions in Spring Web MVC applications.

10-9 Handling exceptions using @ExceptionHandler annotation

@ExceptionHandler annotation is used
in an annotated controller to identify the method responsible for handling
exceptions thrown by the controller. Spring’s HandlerExceptionResolver is
responsible for mapping an exception to an appropriate controller method
responsible for handling the exception. You should note that the <annotation-driven> element of Spring’s mvc schema configures an instance of ExceptionHandlerExceptionResolver (a HandlerExceptionResolver implementation) that maps an exception to an appropriate @ExceptionHandler annotated method.

The
following example listing shows usage of @ExceptionHandler annotation in ch10-bankapp
project:

Example listing 10-37 – @ExceptionHandler annotation usage

Project – ch10-bankapp

Source location - src/main/java/sample/spring/chapter10/web

package sample.spring.chapter10.web;

import
org.springframework.web.bind.annotation.ExceptionHandler;

.....

@Controller

@RequestMapping(value
= "/fixedDeposit")

public class
FixedDepositController {

 @ExceptionHandler

 public
String handleException(Exception ex) {

 return
"error";

 }

}

The above
example listing shows that the FixedDepositController’s handleException method is annotated with @ExceptionHandler annotation. This
means that the handleException method is invoked by Spring Web MVC to handle exceptions thrown
during execution of FixedDepositController controller. @ExceptionHandler methods typically render an error page containing error details. An
@ExceptionHandler annotation’s value attribute specifies the list of exceptions that the @ExceptionHandler annotated method handles. If the value attribute is not specified, the exception types specified as method arguments are
handled by the @ExceptionHandler annotated method. In the above example listing, the handleException method handles exceptions of type java.lang.Exception.

Like @RequestMapping methods, @ExceptionHandler methods can have flexible method signatures. The return types
supported for @ExceptionHandler methods include ModelAndView, View, String, void, Model, and so on. The argument types supported for @ExceptionHandler methods include HttpServletRequest, HttpServletResponse, HttpSession, and so on. Refer to @ExceptionHandler Javadoc for the
complete list of supported arguments and return types.

The view
information returned by an @ExceptionHandler annotated method is used by the DispatcherServlet to render an
appropriate error page. For instance, in example listing 10-37, the error string
value returned by the handleException method is used by the DispatcherServlet to render /WEB-INF/jsp/error.jsp page. If the @ExceptionHandler method doesn’t return any view information (that is, the return
type is void or Model), Spring’s RequestToViewNameTranslator class (refer section 11-2 of chapter 11 for details) is used to
determine the view to be rendered.

You can
define multiple @ExceptionHandler annotated methods in your controller class for handling different
exception types. The value attribute of @ExceptionHandler annotation allows you to specify the exception types that are
handled by the method. The following example listing shows that the myExceptionHandler method handles exceptions of type IOException and FileNotFoundException, and myOtherExceptionHandler method handles exceptions of type TimeoutException:

Example listing 10-38 –
Specifying the type of exceptions handled by an @ExceptionHandler method

@Controller

.....

public class MyController
{

 @ExceptionHandler(value
= {IOException.class, FileNotFoundException.class})

 public
String myExceptionHandler() {

 return
"someError";

 }

 @ExceptionHandler(value
= TimeoutException.class)

 public
String myOtherExceptionHandler() {

 return
"otherError";

 }

}

If MyController
throws an exception of type IOException or FileNotFoundException (or an exception that is a subtype of IOException or FileNotFoundException), the myExceptionHandler method is invoked to handle the exception. If MyController
throws an exception of type TimeoutException (or an exception that is a subtype of TimeoutException), the myOtherExceptionHandler method is invoked to handle the exception.

Let’s now
look at how Spring’s ContextLoaderListener is used to load root web application context XML file(s).

10-11 Loading root web application
context XML file(s)

As
mentioned at the beginning of this chapter, the root web application context
file defines beans that are shared by all the servlets
and filters of the web application. The following example listing shows the
configuration of ContextLoaderListener:

Example listing 10-39 – ContextLoaderListener configuration

Project – ch10-bankapp

Source location - src/main/webapp/WEB-INF/web.xml

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>classpath*:/META-INF/spring/applicationContext.xml</param-value>

</context-param>

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

In the
above example listing, <listener> element configures the ContextLoaderListener (a ServletContextListener) that is responsible for loading the root web application context
XML file(s) specified by the contextConfigLocation servlet context initialization parameter. The <context-param> element is used to specify a servlet context initialization
parameter. ContextLoaderListener creates an instance of the root WebApplicationContext with which the
beans loaded from the root web application context XML file(s) are registered.

In the
above example listing, contextConfigLocation parameter specifies /META-INF/spring/applicationContext.xml file as the root web application context XML file. You can specify
multiple application context XML files separated by comma or newline or
whitespace or semicolon. If you don’t specify the contextConfigLocation parameter, the ContextLoaderListener treats /WEB-INF/applicationContext.xml file as the root web application context XML file.

10-12 Summary

In this
chapter, we looked at some of the important objects of a simple Spring Web MVC
application. We also looked at how to use @Controller, @RequestMapping, @RequestParam and @ExceptionHandler annotations to create annotated controllers. In the next chapter,
we’ll look at how Spring transparently binds
request parameters to form backing objects and performs validation.

Chapter 11 – Validation and data
binding in Spring Web MVC

11-1 Introduction

In the
previous chapter, we looked at the MyBank web application that was developed
using @Controller, @RequestMapping and @RequestParam annotations. We saw that the form data was retrieved from the
request (refer example listing 10-23, 10-28 and 10-29) and explicitly set on the form backing object (which was FixedDepositDetails object). Also, the validation logic was written in the controller
method itself (refer example listing 10-34).

In this
chapter, we’ll discuss:

·
@ModelAttribute and @SessionAttributes annotations that are useful when dealing with model attributes

·
how Spring’s WebDataBinder simplifies binding form
data to form backing objects

·
validating form backing objects using Spring
Validation API and JSR 303’s constraint annotations

·
Spring’s form tag library that simplifies
writing JSP pages

Let’s
first look at the @ModelAttribute annotation that is used for adding and retrieving model attributes
to and from Spring’s Model object.

11-2 Adding and retrieving model
attributes using @ModelAttribute annotation

In the
previous chapter, we saw that a @RequestMapping method stores model attributes in a HashMap (or ModelMap)
instance and returns these model attributes via ModelAndView object. The model
attributes returned by a @RequestMapping method are stored in Spring’s Model object.

A model
attribute may represent a form backing object or a reference data. FixedDepositDetails object in the MyBank web application is an example of a form
backing object; when the form for opening a new fixed deposit is submitted, the
information contained in the form is stored in the FixedDepositDetails object. Typically, domain objects or entities
in an application are used as form backing objects. Reference data refers to the additional information (other than the form backing
object) required by the view. For instance, if you add a user category (like
military personnel, senior citizen, and so on) to each fixed deposit, the form
for opening new fixed deposits would need to show a combo box displaying the
list of categories. The list of categories would be the reference data needed
for displaying the form for opening new fixed deposits.

@ModelAttribute annotation is used on
methods and method arguments to store and retrieve model attributes from
Spring’s Model object, respectively. @ModelAttribute annotation on a
method indicates that the method adds one or more model attributes to the Model object.
And, @ModelAttribute annotation on a method argument is used to retrieve a model
attribute from the Model object and assign it to the method argument.

IMPORT chapter
11/ch11-bankapp (This project shows the MyBank web application that uses @ModelAttribute annotation and Spring’s form tag library. The MyBank web
application functionality offered by ch11-bankapp and ch10-bankapp
projects is the same. If you deploy the project on Tomcat server and access the
URL http://localhost:8080/ch11-bankapp, you’ll see the list of fixed deposits in
the system.)

Let’s
first look at @ModelAttribute annotated methods.

Adding model attributes using
method-level @ModelAttribute annotation

The
following example listing shows FixedDepositController’s getNewFixedDepositDetails method that is annotated with @ModelAttribute annotation:

Example listing 11-1 – @ModelAttribute annotation usage at method level

Project – ch11-bankapp

Source
location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

import
org.springframework.web.bind.annotation.ModelAttribute;

import
sample.spring.chapter11.domain.FixedDepositDetails;

.....

@Controller

@RequestMapping(value
= "/fixedDeposit")

.....

public
class FixedDepositController {

private static Logger logger = Logger.getLogger(FixedDepositController.class);

.....

 @ModelAttribute(value
= "newFixedDepositDetails")

public FixedDepositDetails getNewFixedDepositDetails() {

FixedDepositDetails fixedDepositDetails = new FixedDepositDetails();

fixedDepositDetails.setEmail("You must enter a valid email");

logger.info("getNewFixedDepositDetails() method: Returning a
new instance of

FixedDepositDetails");

return fixedDepositDetails;

}

.....

}

The getNewFixedDepositDetails method creates and returns a new instance of FixedDepositDetails object. As the getNewFixedDepositDetails method is annotated with @ModelAttribute annotation, the
returned FixedDepositDetails instance is added to the Model object. @ModelAttribute’s value attribute specifies that the returned FixedDepositDetails object is stored with name newFixedDepositDetails in the Model object.
Notice that the getNewFixedDepositDetails method logs the following message - ‘getNewFixedDepositDetails() method: Returning a new instance of
FixedDepositDetails’.

NOTE
You should note that the scope of model attributes is request. This means that the model attributes are lost
when a request completes, or if a request is redirected.

Later in
this section, we’ll see how the createFixedDepositForm.jsp JSP page (refer src/main/webapp/WEB-INF/jsp/createFixedDepositForm.jsp file) of ch11-bankapp project uses Spring’s form tag library to access the FixedDepositDetails object named newFixedDepositDetails from the Model object.

If you
don’t specify @ModelAttribute’s value attribute, the returned object is stored in the Model object
using the simple name of the returned object’s type. In
the following example listing, the Sample object returned by the getSample
method is stored with name sample in the Model object:

Example listing 11-2 – @ModelAttribute usage – value attribute is not specified

import
org.springframework.ui.Model;

.....

public
class SampleController {

 @ModelAttribute

 public
Sample getSample() {

return new Sample();

 }

}

A @ModelAttribute annotated method accepts same types of arguments as a @RequestMapping method. The following example listing shows a @ModelAttribute annotated method that accepts an argument of type HttpServletRequest:

Example listing 11-3 – @ModelAttribute annotated method that accepts HttpServletRequest as argument

@ModelAttribute(value = "myObject")

 public SomeObject doSomething(HttpServletRequest
request) { }

In chapter
10, we saw that the @RequestParam annotation is used to pass request parameters to a @RequestMapping annotated method. @RequestParam annotation can also be used to pass request parameters to a @ModelAttribute annotated method, as shown in the following example listing:

Example listing 11-4 – Passing
request parameters to a @ModelAttribute annotated method

@ModelAttribute(value = "myObject")

 public SomeObject doSomething(@RequestParam("someArg")
String myarg) { }

As @RequestMapping and @ModelAttribute annotated methods can accept Model objects as argument, you can directly add model attributes to the Model object in a @ModelAttribute or @RequestMapping annotated method. The following example listing shows a @ModelAttribute method that directly adds model attributes to the Model object:

Example listing 11-5 – Adding
model attributes directly to Model object

import
org.springframework.ui.Model;

.....

public
class SampleWebController {

 @ModelAttribute

public void doSomething(Model model) {

model.addAttribute("myobject", new MyObject());

model.addAttribute("otherobject", new OtherObject());

 }

}

In the
above example listing, the Model object is passed as an argument to the doSomething
method that directly adds model attributes to the Model object.
As the doSomething method adds model attributes directly to the Model object, the
doSomething method’s return type is specified as void, and the @ModelAttribute’s value attribute is not specified.

It is
possible to have a single method annotated with both @RequestMapping and @ModelAttribute annotations. The following example listing shows FixedDepositController’s listFixedDeposits method that is annotated with both @RequestMapping and @ModelAttribute annotations:

Example listing 11-6 – @ModelAttribute and @RequestMapping annotations on the same method

Project – ch11-bankapp

Source
location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

.....

@Controller

@RequestMapping(value
= "/fixedDeposit")

.....

public
class FixedDepositController {

private static Logger logger = Logger.getLogger(FixedDepositController.class);

 @RequestMapping(value
= "/list", method = RequestMethod.GET)

 @ModelAttribute(value
= "fdList")

public List<FixedDepositDetails> listFixedDeposits() {

logger.info("listFixedDeposits() method: Getting list of fixed
deposits");

return fixedDepositService.getFixedDeposits();

}

.....

}

The listFixedDeposits method renders the list.jsp JSP page (refer src/main/webapp/WEB-INF/jsp/fixedDeposit/list.jsp file of ch11-bankapp project) that shows the list of fixed deposits in the system. When
a method is annotated with both @RequestMapping and @ModelAttribute annotations, the value returned by the method is considered as a model
attribute, and not as a view name. In such a scenario, view name is determined by
Spring’s RequestToViewNameTranslator class that determines the view to render based on the request URI
of the incoming request. Later in this chapter, we’ll discuss RequestToViewNameTranslator in detail. In example listing 11-6, notice that the listFixedDeposits method logs the following message – ‘listFixedDeposits() method: Getting list of fixed deposits’.

It is
important to note that you can define multiple methods annotated with @ModelAttribute annotation in a controller. When a request is dispatched to a @RequestMapping annotated method of a controller, all the @ModelAttribute annotated methods of that controller are invoked before the @RequestMapping annotated method is invoked. The following example listing shows a
controller that defines @RequestMapping and @ModelAttribute annotated methods:

Example listing 11-7 – @RequestMapping method is invoked after all the @ModelAttribute methods are invoked

@RequestMapping("/mycontroller")

public
class MyController {

 @RequestMapping("/perform")

public String perform() { }

 @ModelAttribute(value
= "a")

public A getA() { }

 @ModelAttribute(value
= "b")

public B getB() { }

}

In the
above example listing, if a request is mapped to MyController’s perform
method, Spring Web MVC will first invoke getA and getB methods,
followed by invoking the perform method.

If a
method is annotated with both @RequestMapping and @ModelAttribute annotations, the method is invoked only once for
processing the request. The following example listing shows a controller that
defines a method that is annotated with both @RequestMapping and @ModelAttribute annotations:

Example listing 11-8 – Method
annotated with both @RequestMapping and @ModelAttribute annotations is invoked only once for
processing the request

@RequestMapping("/mycontroller")

public
class MyController {

 @RequestMapping("/perform")

 @ModelAttribute

public String perform() { }

 @ModelAttribute(value
= "a")

public A getA() { }

 @ModelAttribute(value
= "b")

public B getB() { }

}

In the
above example listing, if a request is mapped to MyController’s perform
method, Spring Web MVC will first invoke getA and getB methods,
followed by invoking the perform method. As the perform method is annotated with both @RequestMapping and @ModelAttribute annotations, Spring’s RequestToViewNameTranslator class is
used for determining the name of the view to render after the perform method
is executed.

If you now
deploy the ch11-bankapp project on Tomcat and go to http://localhost:8080/ch11-bankapp/fixedDeposit/list URL, you’ll see a web page showing the list of fixed deposits.
Also, you’ll see the following sequence of messages on the console:

INFO
sample.spring.chapter11.web.FixedDepositController –
getNewFixedDepositDetails() method: Returning a new
instance of FixedDepositDetails

INFO
sample.spring.chapter11.web.FixedDepositController – listFixedDeposits()
method: Getting list of fixed deposits

The above
output shows that the getNewFixedDepositDetails method (which is annotated with @ModelAttribute annotation) is
invoked first, followed by the listFixedDeposits (which is annotated with both @ModelAttribute and @RequestMapping annotation).

Let’s now
look at how model attributes are retrieved from the Model object
using @ModelAttribute annotation on a method argument.

Retrieving model attributes using @ModelAttribute annotation

You can
use @ModelAttribute annotation on arguments of a @RequestMapping annotated method to
retrieve model attributes from the Model object.

The
following example listing shows FixedDepositController’s openFixedDeposit method that uses @ModelAttribute annotation to retrieve newFixedDepositDetails object from
the Model object:

Example listing 11-9 – @ModelAttribute annotation on a method argument

Project – ch11-bankapp

Source
location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

.....

@Controller

@RequestMapping(value
= "/fixedDeposit")

.....

public
class FixedDepositController {

.....

 @ModelAttribute(value
= "newFixedDepositDetails")

 public
FixedDepositDetails getNewFixedDepositDetails() {

.....

logger.info("getNewFixedDepositDetails() method: Returning a
new instance of

FixedDepositDetails");

.....

 }

.....

@RequestMapping(params = "fdAction=create", method =
RequestMethod.POST)

 public
String openFixedDeposit(

@ModelAttribute(value = "newFixedDepositDetails")

FixedDepositDetails fixedDepositDetails,.....) {

.....

fixedDepositService.saveFixedDeposit(fixedDepositDetails);

logger.info("openFixedDeposit() method: Fixed deposit details successfully
saved.

Redirecting to show the list of fixed deposits.");

.....

}

}

.....

}

In the
above example listing, @ModelAttribute annotated getNewFixedDepositDetails method is invoked before @RequestMapping annotated openFixedDeposit method. When the getNewFixedDepositDetails method is invoked, the returned FixedDepositDetails instance is
stored in the Model object with name newFixedDepositDetails. Now, the openFixedDeposit method’s fixedDepositDetails argument is annotated with @ModelAttribute(value="newFixedDepositDetails"); therefore, the newFixedDepositDetails object is obtained from the Model object and assigned to the fixedDepositDetails argument.

If you
look at the FixedDepositController’s openFixedDeposit method, you’ll notice that we have not
written any logic to obtain values of tenure, amount and email fields from the
request and populate the newFixedDepositDetails instance. This is because the Spring’s WebDataBinder
object (explained later in this chapter) is responsible for transparently
retrieving request parameters from the request and populating the fields (with
matching names) of newFixedDepositDetails instance. For instance, if a request parameter named tenure is
found in the request, WebDataBinder sets the value of tenure field of newFixedDepositDetails instance to the value of tenure request parameter.

Figure
11-1 summarizes the sequence of actions that are performed by Spring when a
request is dispatched to FixedDepositController’s openFixedDeposit method.

Figure 11-1 Order in which @ModelAttribute and @RequestMapping annotated methods of FixedDepositController are invoked

In the
above figure, the RequestMappingHandlerAdapter object of Spring Web MVC is responsible for invoking @ModelAttribute and @RequestMapping annotated methods of a controller. At first, the getNewFixedDepositDetails method is invoked and the returned FixedDepositDetails instance is
stored in the Model object with name newFixedDepositDetails. Next, the newFixedDepositDetails instance is retrieved from the Model and passed as an argument to
the openFixedDeposit method.

Let’s now
look at what times during the processing of a request a @ModelAttribute annotated method is invoked.

Request processing and @ModelAttribute annotated methods

In example
listing 11-6, we saw that the execution of listFixedDeposits method logs the
following message:

listFixedDeposits() method: Getting list of
fixed deposits

In example
listing 11-9, we saw that the execution of getNewFixedDepositDetails method logs
the following message:

getNewFixedDepositDetails() method: Returning a new instance of
FixedDepositDetails

And, the openFixedDeposit method logs the following message:

openFixedDeposit() method: Fixed deposit details successfully saved.
Redirecting to show the list of fixed deposits

To see the
order in which the listFixedDeposits, getNewFixedDepositDetails and openFixedDeposit methods are invoked, deploy the ch11-bankapp project and follow
these steps:

1.
Go to http://localhost:8080/ch11-bankapp/fixedDeposit/list URL. You’ll see the list of fixed deposits in the system and the ‘Create new Fixed Deposit’ button (refer figure 10-8 of chapter 10).

2.
Click the ‘Create new Fixed Deposit’ button
that shows the HTML form for opening a new fixed deposit (refer figure 10-9 of
chapter 10).

3.
Enter fixed deposit details and click the ‘Save’ button.
If no validation errors are found in the entered data, the fixed deposit
details are successfully saved and the list of fixed deposits in the system
(which includes the newly created fixed deposit) is displayed once again.

The following table describes the actions performed by you and the
corresponding messages that are printed by the MyBank application on the console:

 	
 Action

 	
 Messages printed on the console

 	
 Go to http://localhost:8080/ch11-bankapp/fixedDeposit/list URL

 	
 getNewFixedDepositDetails() method: Returning a new instance of FixedDepositDetails

 listFixedDeposits() method: Getting list of fixed deposits

 	
 Click the ‘Create
 new Fixed Deposit’ button

 	
 getNewFixedDepositDetails() method: Returning a new instance of FixedDepositDetails

 showOpenFixedDepositForm() method: Showing form for opening a new fixed deposit

 	
 Enter fixed deposit details and click the ‘Save’
 button

 	
 getNewFixedDepositDetails() method: Returning a new instance of FixedDepositDetails

 openFixedDeposit() method: Fixed deposit details successfully saved. Redirecting to
 show the list of fixed
 deposits.

 getNewFixedDepositDetails() method: Returning a new instance of FixedDepositDetails

 listFixedDeposits() method: Getting list of fixed deposits

The above
table shows that the @ModelAttribute annotated getNewFixedDepositDetails method is called before each invocation of @RequestMapping annotated method of the FixedDepositController class. As the getNewFixedDepositDetails method creates a new instance of FixedDepositDetails object, a new
instance of FixedDepositDetails object is created each time a request is handled by the FixedDepositController.

If a @ModelAttribute annotated method fires SQL queries or invokes an external web
service to populate the model attribute returned by the method, multiple
invocations of @ModelAttribute annotated method will adversely affect the performance of the
application. Later in this chapter, we’ll see that you can use @SessionAttributes annotation to avoid multiple invocations of a @ModelAttribute annotated method. @SessionAttributes annotation instructs Spring to cache the object returned by the @ModelAttribute annotated method.

Let’s now
look at a scenario in which the model attribute referred by the @ModelAttribute annotated method argument is not
found in the Model object.

Behavior of @ModelAttribute annotated method arguments

We saw
earlier that the @ModelAttribute annotation can be used on a method argument to retrieve a model
attribute from the Model object. If the model attribute specified by the @ModelAttribute annotation is not found in the Model, Spring automatically creates a new instance of the method argument
type, assigns it to the method argument and also puts it into the Model object. To
allow Spring to create an instance of the method argument type, the Java class
of the method argument type must provide a no-argument constructor.

Let’s
consider the following SomeController controller that defines a single @RequestMapping method, doSomething:

Example listing 11-10 – @ModelAttribute argument is not available in the Model object

@Controller

@RequestMapping(value
= "/some")

public
class SomeController {

@RequestMapping("/do")

public void doSomething(@ModelAttribute("myObj") MyObject myObject) {

logger.info(myObject);

.....

}

}

The above
example listing shows that the SomeController class doesn’t define any @ModelAttribute annotated method that
adds an object named myObj of type MyObject in the Model. For this reason, when a request for doSomething method is received,
Spring creates an instance of MyObject, assigns it to the
myObject argument and also puts the newly
created MyObject instance into the Model object.

Let’s now
look at Spring’s RequestToViewNameTranslator object.

RequestToViewNameTranslator

RequestToViewNameTranslator
determines the view to be rendered when a @RequestMapping annotated method
doesn’t explicitly specify the view to be rendered.

We saw
earlier that when a @RequestMapping method is also annotated with @ModelAttribute annotation, the value
returned by the method is considered as a model attribute. In such a situation,
the RequestToViewNameTranslator object is responsible for determining the view to be rendered based
on the incoming web request. Similarly, if a @RequestMapping annotated method
returns void, org.springframework.ui.Model or java.util.Map, the RequestToViewNameTranslator object determines the view to be rendered.

DefaultRequestToViewNameTranslator is an implementation of RequestToViewNameTranslator that is
used by default by DispatcherServlet to determine the view to be rendered when no view is explicitly
returned by a @RequestMapping method. DefaultRequestToViewNameTranslator uses the request URI to determine the name of the logical view to
render. DefaultRequestToViewNameTranslator removes the leading and trailing slashes and the file extension
from the URI to determine the view name. For instance, if the URL is http://localhost:8080/doSomething.htm, the view name becomes doSomething.

In case of
MyBank web application, the FixedDepositController’s listFixedDeposits method (refer example listing 11-6 or FixedDepositController.java file of ch11-bankapp project) is annotated with both @RequestMapping and @ModelAttribute; therefore, RequestToViewNameTranslator is used by the DispatcherServlet to determine the view to render. As the listFixedDeposits method is mapped to request URI /fixedDeposit/list, RequestToViewNameTranslator returns /fixedDeposit/list as the view name. The ViewResolver configured in the web
application context XML file of MyBank web application (refer bankapp-config.xml file of ch11-bankapp project) maps /fixedDeposit/list view name to /WEB-INF/jsp/fixedDeposit/list.jsp JSP view.

Let’s now
look at @SessionAttributes annotation.

11-3 Caching model attributes using @SessionAttributes annotation

In the
previous section, we saw that all the @ModelAttribute annotated methods of a controller are always
invoked before the @RequestMapping annotated method. This behavior may not be acceptable in situations
in which @ModelAttribute methods obtain data from the database or from an external web
service to populate the model attribute. In such scenarios, you can annotate your
controller class with @SessionAttributes annotation that specifies the model attributes that are stored in HttpSession
between requests.

If @SessionAttributes annotation is used, a @ModelAttribute annotated method is
invoked only if the model attribute specified by the @ModelAttribute annotation is not found in the HttpSession. Also, @ModelAttribute annotation on a method argument will result in creation of a new
instance of model attribute only if the model attribute is not found in the HttpSession.

IMPORT chapter
11/ch11-session-attributes (This project shows a modified version of ch11-bankapp
project that uses @SessionAttributes annotation to temporarily store model attributes in HttpSession.
The MyBank web application functionality offered by ch11-session-attributes and ch10-bankapp projects are the same. If you deploy the project on Tomcat server
and access the URL http://localhost:8080/ch11-session-attributes, you’ll see the list of fixed deposits in
the system.)

The
following example listing shows usage of @SessionAttributes annotation in ch11-session-attributes project to temporarily store newFixedDepositDetails and editableFixedDepositDetails model attributes in HttpSession:

Example listing 11-11 – @SessionAttributes annotation usage

Project – ch11-session-attributes

Source
location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

import
org.springframework.web.bind.annotation.SessionAttributes;

.....

@SessionAttributes(value
= { "newFixedDepositDetails", "editableFixedDepositDetails"
})

public class
FixedDepositController {

 @ModelAttribute(value
= "newFixedDepositDetails")

 public
FixedDepositDetails getNewFixedDepositDetails() {

 FixedDepositDetails
fixedDepositDetails = new FixedDepositDetails();

 fixedDepositDetails.setEmail("You
must enter a valid email");

 return
fixedDepositDetails;

 }

@RequestMapping(params = "fdAction=create", method =
RequestMethod.POST)

 public
String openFixedDeposit(

 @ModelAttribute(value
= "newFixedDepositDetails") FixedDepositDetails
fixedDepositDetails,

.....) { }

@RequestMapping(params = "fdAction=view", method = RequestMethod.GET)

 public
ModelAndView viewFixedDepositDetails(

 @RequestParam(value
= "fixedDepositId") int fixedDepositId) {

FixedDepositDetails fixedDepositDetails = fixedDepositService

 .getFixedDeposit(fixedDepositId);

Map<String, Object> modelMap = new HashMap<String, Object>();

 modelMap.put("editableFixedDepositDetails",
fixedDepositDetails);

 return
new ModelAndView("editFixedDepositForm", modelMap);

 }

}

@SessionAttributes annotation’s value
attribute specifies names of the model attributes that are temporarily stored in HttpSession.
In the above example listing, model attributes named newFixedDepositDetails and editableFixedDepositDetails are stored in HttpSession between requests. The newFixedDepositDetails model
attribute is returned by @ModelAttribute annotated getNewFixedDepositDetails method, and the editableFixedDepositDetails model attribute is returned by the @RequestMapping annotated viewFixedDepositDetails method.

A
controller contributes model attributes via @ModelAttribute annotated methods, @RequestMapping methods (that return ModelAndView, Model or Map), and by
directly adding model attributes to the Model object. The model attributes
contributed by the controller through any
approach are candidate for storage in the HttpSession by @SessionAttributes annotation.

When using
@SessionAttributes annotation, you should ensure that the model attributes stored in
the HttpSession are removed when they are no longer required. For instance, the newFixedDepositDetails model attribute represents an instance of FixedDepositDetails that is used by the ‘Open fixed deposit’ form to show the
default value(s) of Email form field as ‘You
must enter a valid email’ (refer getNewFixedDepositDetails method in example listing 11-11). Also, when the user clicks the ‘Save’ button
on the ‘Open fixed deposit’ form, the fixed deposit details entered by the user are set on the
newFixedDepositDetails instance (refer openFixedDeposit
method in example listing 11-11). After the
fixed deposit is successfully created, the newFixedDepositDetails instance is no
longer required; therefore, it must be removed from the HttpSession.
Similarly, editableFixedDepositDetails model attribute is not required after you have successfully
modified details of a fixed deposit.

You can
instruct Spring to remove all the model attributes stored in HttpSession by calling setComplete method of Spring’s SessionStatus object. The following example listing shows FixedDepositController’s openFixedDeposit and editFixedDeposit methods that invoke SessionStatus’s setComplete method after a fixed deposit is successfully created or modified:

Example listing 11-12 – Removing
model attributes from HttpSession using SessionStatus object

Project – ch11-session-attributes

Source
location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

import
org.springframework.web.bind.support.SessionStatus;

.....

@SessionAttributes(value
= { "newFixedDepositDetails", "editableFixedDepositDetails"
})

public
class FixedDepositController {

.....

@RequestMapping(params = "fdAction=create", method = RequestMethod.POST)

public String openFixedDeposit(

@ModelAttribute(value = "newFixedDepositDetails") FixedDepositDetails
fixedDepositDetails,

....., SessionStatus sessionStatus) {

fixedDepositService.saveFixedDeposit(fixedDepositDetails);

sessionStatus.setComplete();

}

}

@RequestMapping(params = "fdAction=edit", method =
RequestMethod.POST)

public String editFixedDeposit(

@ModelAttribute("editableFixedDepositDetails") FixedDepositDetails
fixedDepositDetails,

....., SessionStatus sessionStatus) {

fixedDepositService.editFixedDeposit(fixedDepositDetails);

sessionStatus.setComplete();

.....

}

}

.....

}

The above
example listing shows that both openFixedDeposit and editFixedDeposit methods are defined to accept an argument of type SessionStatus.
When a @RequestMapping annotated method specifies an argument of type SessionStatus,
Spring supplies an instance of SessionStatus to the method. The call to setComplete method instructs Spring
to remove the current controller’s
model attributes from the HttpSession object.

In example
listing 11-11 and 11-12, we saw that the @SessionAttributes’s value
attribute specifies the names of model attributes that are temporarily stored
in HttpSession. If you want that only certain types of
model attributes are stored in HttpSession, you can use @SessionAttributes’s types attribute. For instance, the following @SessionAttributes annotation specifies that attributes named x and y, and all model attributes that are of type MyObject, are temporarily stored in HttpSession:

@SessionAttributes(value = { "x",
"y" }, types = { MyObject.class })

You can see the order in which listFixedDeposits, getNewFixedDepositDetails and openFixedDeposit methods are invoked by deploying ch11-session-attributes project and perform
the actions described in the following table:

 	
 Action

 	
 Messages printed on the console

 	
 Go to http://localhost:8080/ch11-session-attributes/fixedDeposit/list URL

 	
 getNewFixedDepositDetails() method: Returning a new instance of FixedDepositDetails

 listFixedDeposits() method: Getting
 list of fixed deposits

 	
 Click
 the ‘Create new Fixed Deposit’
 button

 	
 showOpenFixedDepositForm() method:
 Showing form for opening a new fixed deposit

 	
 Enter
 fixed deposit details and click the ‘Save’ button

 	
 openFixedDeposit() method: Fixed
 deposit details successfully saved. Redirecting to show the list of fixed deposits.

 getNewFixedDepositDetails() method: Returning a new instance of
 FixedDepositDetails

 listFixedDeposits() method: Getting
 list of fixed deposits

In ch11-bankapp project, we saw
that the @ModelAttribute
annotated getNewFixedDepositDetails method of FixedDepositController was
invoked each time a request was dispatched to FixedDepositController.
The above table shows that the getNewFixedDepositDetails
method is invoked when request is handled by the FixedDepositController for the first time. As the openFixedDeposit
method removes the model attributes stored in the HttpSession,
request to listFixedDeposits method results in invocation of getNewFixedDepositDetails method once
again.

Now, that
we have seen how to use @ModelAttribute
and @SessionAttributes
annotations, let’s look at how data binding
is performed in Spring Web MVC applications.

11-4 Data binding support in Spring

When a
form is submitted in a Spring Web MVC application, request parameters contained
in the request are automatically set on the model
attribute that acts as the form backing object.
This process of setting request parameters on the form backing object is
referred to as data
binding. In this section, we’ll look at Spring’s WebDataBinder instance that binds request parameters to form backing objects.

IMPORT chapter
11/ch11-data-binding (This project shows a modified version of ch11-session-attributes project that shows how to register PropertyEditor implementations with
Spring container. If you deploy the project on Tomcat server and access the URL
http://localhost:8080/ch11-data-binding, you’ll see the list of fixed deposits in
the system.)

The
following example listing shows the FixedDepositDetails class of ch11-data-binding project:

Example listing 11-13 – FixedDepositDetails class

Project – ch11-data-binding

Source location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.domain;

import
java.util.Date;

public
class FixedDepositDetails {

.....

 private
long depositAmount;

 private
Date maturityDate;

.....

public void setDepositAmount(long depositAmount) {

this.depositAmount = depositAmount;

}

public void setMaturityDate(Date maturityDate) {

this.maturityDate = maturityDate;

}

.....

}

The above
example listing shows that the depositAmount and maturityDate fields are of type long and java.util.Date, respectively. The values of depositAmount and maturityDate
fields are set when the ‘Open
fixed deposit’ form of ch11-data-binding project is submitted. The following figure shows the ‘Open fixed deposit’ form of ch11-data-binding project that is used for opening new fixed deposits:

Figure 11-2 ‘Open fixed deposit’ form for opening new fixed deposits

In the
above figure, ‘Amount(in USD)’ and ‘Maturity date’ form fields correspond to depositAmount and maturityDate
fields of FixedDepositDetails class (refer example listing 11-13). One of the important things to
note is that the ‘Maturity date’ field accepts a date in the format ‘MM-dd-yyyy’, like 01-27-2013. As
depositAmount field is of type long, and maturityDate is of type java.util.Date, Spring’s data binding mechanism is responsible for doing the type
conversion from String to the type defined by the FixedDepositDetails instance.

The
following example listing shows FixedDepositController’s openFixedDeposit method that is invoked when a user fills the ‘Open fixed deposit’ form and clicks the ‘Save’ button (refer figure 11-2):

Example listing 11-14 – FixedDepositController - Automatic data binding example

Project – ch11-data-binding

Source
location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

@Controller

.....

public
class FixedDepositController {

.....

@RequestMapping(params = "fdAction=create", method =
RequestMethod.POST)

public String openFixedDeposit(

@ModelAttribute(value = "newFixedDepositDetails")
FixedDepositDetails fixedDepositDetails,

BindingResult bindingResult, SessionStatus sessionStatus) {

....

}

.....

}

In the
above example listing, the @ModelAttribute annotated FixedDepositDetails argument represents the form backing object on which the request
parameters are set when the ‘Open
fixed deposit’ form is submitted. Spring’s WebDataBinder
instance binds request parameters to the FixedDepositDetails instance.

Let’s now
look at how WebDataBinder performs data binding.

WebDataBinder – data binder for web
request parameters

WebDataBinder uses the request
parameter name to find the corresponding JavaBean-style setter method on the
form backing object. If a JavaBean-style setter method is found, WebDataBinder
invokes the setter method and passes the request parameter value as an argument
to the setter method. If the setter method is defined to accept a non-String type
argument, WebDataBinder uses an appropriate PropertyEditor to perform the type conversion.

The
following example listing shows the MyObject class that acts as a form
backing object in an application:

Example listing 11-15 – MyObject class
– a form backing object

public
class MyObject {

 private
String x;

 private
N y;

.....

public void setX(String x) {

this.x = x;

}

public void setY(N y) {

this.y = y;

}

}

The above
example listing shows that the MyObject class defines properties named x and y of type String and N,
respectively.

The
following figure shows how WebDataBinder binds request parameters named x and y to x and y properties of MyObject
instance:

Figure 11-3 WebDataBinder
performs data binding by using registered PropertyEditors to perform type conversion

The above
figure shows that the WebDataBinder uses a PropertyEditor to convert String value b to type N, before calling the setY method of MyObject instance.

Spring
provides a couple of built-in PropertyEditor implementations that are used by WebDataBinder for converting String type
request parameter value to the type defined by the form backing object. For
instance, CustomNumberEditor, FileEditor, CustomDateEditor are some of the built-in PropertyEditors provided by Spring.
For a complete list of built-in PropertyEditors, refer to org.springframework.beans.propertyeditors package.

CustomNumberEditor is used for converting a String value to a java.lang.Number type, like Integer, Long, Double, and so on. CustomDateEditor is used for converting a String value to a java.util.Date
type. You can pass a java.text.DateFormat instance to CustomDateEditor to specify the date format to be used for parsing and rendering
dates. Both these PropertyEditors are required in ch11-data-binding project because we need to convert request parameter values to depositAmount
(which is of type long) and maturityDate (which is of type java.util.Date). CustomNumberEditor is pre-registered with the WebDataBinder instance but you need to explicitly register CustomDateEditor.

Let’s now
look at how you can configure a WebDataBinder instance and register a PropertyEditor implementation with
it.

Configuring a WebDataBinder instance

You can
configure a WebDataBinder instance by:

·
defining an @InitBinder annotated method in the
controller class

·
configuring a WebBindingInitializer implementation
in the web application context XML file

·
defining an @InitBinder annotated method in a @ControllerAdvice annotated class

Let’s look
at each of the above mentioned approach for configuring a WebDataBinder
instance and registering a PropertyEditor with it.

Defining
an @InitBinder annotated method in the controller
class

An @InitBinder
annotated method in a controller class specifies that the method initializes an
instance of WebDataBinder that will be used by the controller during data binding. The value
attribute of @InitBinder annotation specifies the name(s) of the model attribute to which
the initialized WebDataBinder instance applies.

The
following example listing shows FixedDepositController’s initBinder_New method that is annotated with @InitBinder:

Example listing 11-16 – FixedDepositController - @InitBinder annotation usage

Project – ch11-data-binding

Source
location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

import
java.text.SimpleDateFormat;

import
org.springframework.beans.propertyeditors.CustomDateEditor;

import
org.springframework.web.bind.WebDataBinder;

import
org.springframework.web.bind.annotation.InitBinder;

@Controller

.....

public
class FixedDepositController {

.....

 @ModelAttribute(value
= "newFixedDepositDetails")

 public FixedDepositDetails
getNewFixedDepositDetails() { }

 @InitBinder(value
= "newFixedDepositDetails")

public void initBinder_New(WebDataBinder webDataBinder) {

webDataBinder.registerCustomEditor(Date.class,

new CustomDateEditor(new SimpleDateFormat("MM-dd-yyyy"), false));

 }

}

In the
above example listing, the @InitBinder annotation’s value attribute is set to newFixedDepositDetails, which means that the WebDataBinder initialized by the initBinder_New
method applies only to the newFixedDepositDetails model attribute. An @InitBinder annotated method can accept same set of arguments (like HttpServletRequest, SessionStatus, and so on) that can be passed to a @RequestMapping annotated method.
But, an @InitBinder annotated method can’t be defined to accept model attributes and BindingResult
(or Errors) objects as arguments. Typically, WebDataBinder instance, along with
Spring’s WebRequest or java.util.Locale instance, is passed to an @InitBinder method. You should note
that the return type of an @InitBinder method must be void.

WebDataBinder’s registerCustomEditor method is used for registering a PropertyEditor with the WebDataBinder
instance. In example listing 11-16, initBinder_New method registers CustomDateEditor (a PropertyEditor) with the WebDataBinder instance.

You can
define an @InitBinder annotated method for each model attribute of a controller, or you
can define a single @InitBinder annotated method that applies to all the model attributes of the
controller. If you don’t specify the value attribute of @InitBinder
annotation, the WebDataBinder instance initialized by the method is applicable to all the model attributes of the controller.

Configuring a WebBindingInitializer implementation

A WebDataBinder instance is first
initialized by RequestMappingHandlerAdapter,
followed by further initialization by WebBindingInitializer and
@InitBinder
methods.

The <annotation-driven> element of Spring’s mvc schema creates an instance of Spring’s RequestMappingHandlerAdapter that initializes the WebDataBinder. You can supply an
implementation of Spring’s WebBindingInitializer interface to RequestMappingHandlerAdapter to further initialize WebDataBinder instances. You can
additionally use @InitBinder methods in a controller class to further initialize WebDataBinder
instances.

The
following figure shows the sequence in which RequestMappingHandlerAdapter, WebBindingInitializer and @InitBinder methods initialize a WebDataBinder instance:

Figure 11-4 The sequence in which
a WebDataBinder instance is initialized by RequestMappingHandlerAdapter, WebBindingInitializer and @InitBinder methods of a controller class

WebDataBinder initialization by an @InitBinder method
of a controller class is applicable only to that controller’s model attributes.
For instance, if you use an @InitBinder method in controller X to set the CustomDateEditor property editor on the WebDataBinder instance, then the CustomDateEditor property editor will be available only to the model attributes of
controller X during data binding. In MyBank application, the CustomDateEditor was required only by the model attributes of the FixedDepositController; therefore, we used @InitBinder annotated methods in the FixedDepositController class to
register CustomDateEditor with WebDataBinder instance.

Spring’s WebBindingInitializer is a callback interface whose implementation is responsible for
initializing a WebDataBinder with the configuration that applies to all the
controllers (and thereby to all the model attributes) in the application. Let’s
look at how to configure a custom WebBindingInitializer when using <annotation-driven> element of Spring’s mvc schema.

The <annotation-driven> element of Spring’s mvc schema creates and registers RequestMappingHandlerAdapter and RequestMappingHandlerMapping objects with the Spring container. The other objects that are
configured by <annotation-driven> element are LocalValidatorFactoryBean (explained in section 11-5) and FormattingConversionServiceFactoryBean (explained in section 13-5). The <annotation-driven> element
provides couple of attributes that help you customize RequestMappingHandlerAdapter and RequestMappingHandlerMapping objects. If the customization you want to make to RequestMappingHandlerAdapter or RequestMappingHandlerMapping object is not provided by the <annotation-driven> element,
the only option is to remove <annotation-driven> element and explicitly configure RequestMappingHandlerAdapter and RequestMappingHandlerMapping objects in the web application context XML file. As <annotation-driven> element doesn’t provide any option to supply a custom WebBindingInitializer instance to the RequestMappingHandlerAdapter object, you’ll have to explicitly configure RequestMappingHandlerAdapter and RequestMappingHandlerMapping objects in the web application context XML file.

The
following example listing shows how you can use Spring’s ConfigurableWebBindingInitializer (an implementation of WebBindingInitializer) to make CustomDateEditor property editor available to all the controllers in the MyBank
application:

Example listing 11-17 – WebBindingInitializer configuration

<bean
id="handlerAdapter"

class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">

 <property
name="webBindingInitializer" ref="myInitializer" />

</bean>

<bean
id="handlerMapping"

class="org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping"
/>

<bean
id="myInitializer"

class="org.springframework.web.bind.support.ConfigurableWebBindingInitializer">

<property name="propertyEditorRegistrars">

<list>

<bean class="mypackage.MyPropertyEditorRegistrar" />

</list>

</property>

</bean>

The above
example listing shows that RequestMappingHandlerAdapter and RequestMappingHandlerMapping beans are explicitly defined in the web application context XML file. The RequestMappingHandlerAdapter’s webBindingInitializer property refers to the ConfigurableWebBindingInitializer bean that implements WebBindingInitializer interface. ConfigurableWebBindingInitializer’s propertyEditorRegistrars property specifies classes that register one or more PropertyEditors
with WebDataBinder. The following example listing shows how MyPropertyEditorRegistrar class registers CustomDateEditor property editor with WebDataBinder:

Example listing 11-18 – MyPropertyEditorRegistrar class

import
org.springframework.beans.PropertyEditorRegistrar;

import
org.springframework.beans.PropertyEditorRegistry;

import
org.springframework.beans.propertyeditors.CustomDateEditor;

public
class MyPropertyEditorRegistrar implements PropertyEditorRegistrar {

@Override

public void registerCustomEditors(PropertyEditorRegistry registry) {

registry.registerCustomEditor(Date.class, new CustomDateEditor(

new SimpleDateFormat("MM-dd-yyyy"), false));

}

}

The above
example listing shows that the MyPropertyEditorRegistrar class implements Spring’s PropertyEditorRegistrar interface, and provides implementation for registerCustomEditors method defined in the PropertyEditorRegistrar interface.
The PropertyEditorRegistry instance passed to the registerCustomEditors method is used
for registering property editors. PropertyEditorRegistry’s registerCustomEditor method is used for registering a PropertyEditor implementation with
the WebDataBinder. In the above example listing, PropertyEditorRegistry’s registerCustomEditor is used for registering the CustomDateEditor property editor with
the WebDataBinder.

As we saw,
using WebBindingInitializer for initializing WebDataBinder is quite an involved task. A simpler alternative to using WebBindingInitializer is to define @InitBinder annotated methods in a @ControllerAdvice annotated class.

Defining an @InitBinder method
in a @ControllerAdvice annotated
class

Like @Service, @Controller
and @Repository annotations, @ControllerAdvice annotation is a specialized form of @Component annotation. The @ControllerAdvice annotation on a class indicates that the class provides support to
controllers. You can define @InitBinder, @ModelAttribute and @ExceptionHandler annotated methods in the @ControllerAdvice annotated class,
and these annotated methods apply to all the
annotated controllers in the application. As with @Service, @Controller
and @Repository annotations, <classpath-scanning> element of Spring’s context schema automatically detects and registers @ControllerAdvice annotated classes with the Spring container.

If you
notice that you are duplicating @InitBinder, @ModelAttribute and @ExceptionHandler methods in multiple controllers, then consider defining such
methods in a @ControllerAdvice annotated class. For instance, if you want to initialize the WebDataBinder
with the configuration that applies to multiple
controllers in the application, then define an @InitBinder method in a @ControllerAdvice annotated class instead of defining an @InitBinder
method in multiple controller classes.

The following table summarizes the three approaches that we
discussed for initializing WebDataBinder:

 	
 @InitBinder method in controller class

 	
 WebBindingInitializer

 	
 @InitBinder method in @ControllerAdvice class

 	
 Requires
 defining an @InitBinder
 method in a controller

 	
 Requires explicitly configuring RequestMappingHandlerAdapter in the
 web application context XML file

 	
 Requires
 defining an @InitBinder
 method in a @ControllerAdvice
 annotated class

 	
 WebDataBinder
 initialization applies only to the controller that contains the @InitBinder
 method

 	
 WebDataBinder initialization applies to all the annotated controllers in the
 application

 	
 WebDataBinder initialization applies to all the annotated controllers in the
 application

Let’s now
look at how you can allow or disallow fields of a model attribute from
participating in the data binding process.

Allowing or disallowing fields from data binding
process

WebDataBinder allows you to specify
fields of a model attribute that are allowed or disallowed from participating
in the data binding process. It is strongly recommended that you specify the
fields of a model attribute that are allowed or disallowed from the data
binding processes, as failing to do so may compromise the security of your application. Let’s look at a scenario in which we would
like to allow or disallow fields from data binding.

In MyBank
application, when a user selects a fixed deposit for editing, the details of
the selected fixed deposit are loaded from the data store and temporarily
cached in the HttpSession. The user makes changes to the fixed deposit and saves the changes.
The following example listing shows the @RequestMapping methods that are
responsible for loading the selected fixed deposit and saving the updated fixed
deposit information:

Example listing 11-19 – FixedDepositController

Project – ch11-data-binding

Source location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

.....

@SessionAttributes(value
= { "newFixedDepositDetails", "editableFixedDepositDetails"
})

public
class FixedDepositController {

@RequestMapping(params = "fdAction=view", method = RequestMethod.GET)

 public
ModelAndView viewFixedDepositDetails(

@RequestParam(value = "fixedDepositId") int fixedDepositId) {

FixedDepositDetails fixedDepositDetails = fixedDepositService

.getFixedDeposit(fixedDepositId);

Map<String, Object> modelMap = new HashMap<String, Object>();

modelMap.put("editableFixedDepositDetails", fixedDepositDetails);

.....

return new ModelAndView("editFixedDepositForm", modelMap);

}

.....

@RequestMapping(params = "fdAction=edit", method =
RequestMethod.POST)

 public
String editFixedDeposit(

@ModelAttribute("editableFixedDepositDetails") FixedDepositDetails
fixedDepositDetails,) {

.....

}

}

In MyBank
application, a fixed deposit is uniquely identified by the id field of FixedDepositDetails object (refer FixedDepositDetails class of ch11-data-binding project). When a user selects a fixed deposit for editing, the id field value
is passed to the viewFixedDepositDetails method via the fixedDepositId request parameter. The viewFixedDepositDetails method uses
the value of fixedDepositId request parameter to load fixed deposit details and show them on
the ‘Edit fixed deposit’ form, as shown in the following figure:

Figure 11-5
‘Edit
fixed deposit’ form for editing an existing fixed
deposit

As the id value (that
corresponds to id attribute of FixedDepositDetails object) uniquely identifies a fixed deposit in the system, the ‘Edit fixed deposit’ form doesn’t provide any mechanism to change it. When the user
clicks the ‘Save’ button, the FixedDepositController’s editFixedDeposit method is invoked. The editFixedDeposit method saves the changes
to the fixed deposit detail.

When FixedDepositController’s editFixedDeposit method is invoked, the WebDataBinder instance binds request
parameter values to the fields of editableFixedDepositDetails model
attribute – the FixedDepositDetails object that was loaded by viewFixedDepositDetails method and
temporarily stored in HttpSession (refer @SessionAttributes annotation in example listing 11-19). If a malicious user sends a
request parameter named id with value 10, then the WebDataBinder will blindly go ahead and set the id attribute of FixedDepositDetails object to 10 during data binding. This is not
desirable because changing id attribute of a FixedDepositDetails object will compromise application data.

WebDataBinder provides setAllowedFields and setDisallowedFields methods that you can use to set the names of model attribute fields
that can and cannot participate in the data binding process. The following
example listing shows the FixedDepositController’s initBinder_Edit method that specifies that the id field of editableFixedDepositDetails model attribute must not participate in the data
binding process:

Example listing 11-20 – FixedDepositController – WebDataBinder’s
setDisallowedFields method

Project – ch11-data-binding

Source location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

.....

public class
FixedDepositController {

@RequestMapping(params = "fdAction=edit", method =
RequestMethod.POST)

 public
String editFixedDeposit(

 @ModelAttribute("editableFixedDepositDetails")
FixedDepositDetails fixedDepositDetails,) {

 }

 @InitBinder(value
= "editableFixedDepositDetails")

 public void
initBinder_Edit(WebDataBinder webDataBinder) {

webDataBinder.registerCustomEditor(Date.class, new CustomDateEditor(

new SimpleDateFormat("MM-dd-yyyy"), false));

 webDataBinder.setDisallowedFields("id");

 }

}

In the
above example listing, the initBinder_Edit method initializes WebDataBinder instance for the editableFixedDepositDetails model attribute. As the setDisallowedFields method specifies
that the id field of editableFixedDepositDetails model attribute is disallowed to participate in the binding
process, the id field is not set even if a request parameter named id is
contained in the request.

Let’s now
look at Spring’s BindingResult object that exposes errors that occur during data binding and
validation.

Inspecting data binding and validation errors using BindingResult
object

Spring’s BindingResult object provides a controller method with the results of binding
request parameters to the model attribute’s fields. For instance, if any type
conversion error occurs during data binding, they are reported by the BindingResult
object.

The
following example listing shows FixedDepositController’s openFixedDeposit method that creates a fixed deposit only if no errors are reported
by the BindingResult object:

Example listing 11-21 – FixedDepositController – checking for binding and validation errors using BindingResult

Project – ch11-data-binding

Source location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

import
org.springframework.validation.BindingResult;

import org.springframework.web.bind.annotation.ModelAttribute;

.....

public class
FixedDepositController {

@RequestMapping(params = "fdAction=create", method =
RequestMethod.POST)

 public
String openFixedDeposit(

 @ModelAttribute(value
= "newFixedDepositDetails") FixedDepositDetails fixedDepositDetails,

 BindingResult
bindingResult, SessionStatus sessionStatus) {

 if (bindingResult.hasErrors())
{

return "createFixedDepositForm";

 } else {

 fixedDepositService.saveFixedDeposit(fixedDepositDetails);

sessionStatus.setComplete();

return "redirect:/fixedDeposit/list";

 }

 }

}

In the
above example listing, the BindingResult’s hasErrors method returns true if the BindingResult object holds one or more data binding or validation errors. In
section 11-5, we’ll see how validation errors are stored in the BindingResult
object. If errors are reported by the BindingResult object, the openFixedDeposit method renders the ‘Create
fixed deposit’ form with appropriate error
messages. If no errors are reported, the fixed deposit details are saved in the
data store.

You should
note that the BindingResult argument must immediately follow the model attribute argument whose
BindingResult object you want to access in the controller method. For instance,
in example listing 11-21, the BindingResult argument immediately follows the newFixedDepositDetails model
attribute. The following example listing shows an incorrect ordering of the model
attribute and the BindingResult object for the openFixedDeposit method:

Example listing 11-22 – Incorrect
ordering of the model attribute and the BindingResult object

.....

public
class FixedDepositController {

@RequestMapping(params = "fdAction=create", method =
RequestMethod.POST)

public String openFixedDeposit(

@ModelAttribute(value = "newFixedDepositDetails")
FixedDepositDetails fixedDepositDetails,

SessionStatus sessionStatus, BindingResult bindingResult) {

.....

 }

.....

}

In the
above example listing, the ordering of the newFixedDepositDetails model
attribute and the BindingResult object is incorrect because the SessionStatus argument is defined
between them.

If a controller
method accepts multiple model attributes, the BindingResult object corresponding to
each model attribute is specified immediately after each model attribute
argument, as shown in the following example listing:

Example listing 11-23 – Multiple
model attributes and their BindingResult objects

@RequestMapping

public
String doSomething(

 @ModelAttribute(value
= "a") AObject aObj,BindingResult bindingResultA,

@ModelAttribute(value = "b") BObject bObj,BindingResult bindingResultB,) {

}

The above
example listing shows that both model attributes a and b are immediately followed by their
corresponding BindingResult objects.

Now, that
we have seen the data binding process, let’s look at how validation is
performed in Spring Web MVC applications.

11-5 Validation support in Spring

In the
previous section, we saw that the WebDataBinder binds request
parameters to model attributes. The next step in request processing is to
validate model attributes. In Spring Web MVC applications, you can validate
model attributes using Spring Validation API (discussed in section 6-9 of
chapter 6) or by specifying JSR 303 (Bean Validation API) constraints
(discussed in section 6-10 of chapter 6) on fields of model attributes.

NOTE
In this chapter, Spring Validation API and JSR 303 (Bean Validation API) have
been used to validate form backing objects (which are model attributes) in the
web layer of the application. You should note that both JSR 303 (Bean
Validation API) and Spring Validation API can be used to validate objects in any application layer.

Let’s
first look at how to validate model attributes using Spring Validation API’s Validator
interface.

Validating model attributes using Spring’s Validator interface

The
following example listing shows the FixedDepositDetailsValidator class of
MyBank application that validates FixedDepositDetails object:

Example listing 11-24 – FixedDepositDetailsValidator –Spring’s Validator interface usage

Project – ch11-data-binding

Source location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

import
org.springframework.validation.*;

import
sample.spring.chapter11.domain.FixedDepositDetails;

public
class FixedDepositDetailsValidator implements Validator {

 public
boolean supports(Class<?> clazz) {

return FixedDepositDetails.class.isAssignableFrom(clazz);

}

 public
void validate(Object target, Errors errors) {

FixedDepositDetails fixedDepositDetails = (FixedDepositDetails) target;

long depositAmount = fixedDepositDetails.getDepositAmount();

.....

if (depositAmount < 1000) {

errors.rejectValue("depositAmount",
"error.depositAmount.less",

"must be greater than or equal to 1000");

}

if (email == null || "".equalsIgnoreCase(email)) {

ValidationUtils.rejectIfEmptyOrWhitespace(errors, "email", "error.email.blank",

"must not be blank");

}

.....

}

}

Spring’s Validator
interface defines supports and validate methods. The supports method checks if the supplied object instance (represented by the clazz
attribute) can be validated. If the supports method returns true, the validate
method is used to validate the object. In the above example listing, the FixedDepositDetailsValidator’s supports method checks if the supplied object instance is of type FixedDepositDetails. If the supports method returns true, the FixedDepositDetailsValidator’s validate method validates the object. The validate method accepts the object
instance to be validated, and an Errors instance. Errors
instance stores and exposes errors that occur during validation. Errors
instance provides multiple reject and rejectValue methods to register errors with the Errors instance. The rejectValue
methods are used to report field-level errors, and reject methods
are used to report errors that apply to the object being validated. Spring’s ValidationUtils class is a utility class that provides convenience methods to
invoke a Validator, and for rejecting empty fields.

The following
figure describes the parameters that were passed to the rejectValue
method in example listing 11-24 to report a validation error corresponding to FixedDepositDetails’s depositAmount field:

Figure 11-6 Description of
parameters that are passed to rejectValue method of Errors instance to report validation error corresponding to depositAmount
field of FixedDepositDetails

The above
figure shows that field name, error code (which is basically a message key) and
a default error message is passed to the rejectValue method. In chapter 13,
we’ll see how the message keys are used by JSP pages to show messages from
resource bundles.

You can
validate model attributes by:

§ explicitly
invoking validate method on Validator implementation

§ setting
Validator implementation on WebDataBinder, and annotating the model attribute argument in the @RequestMapping method with JSR 303’s @Valid annotation

Let’s look
at each of the above mentioned approaches in detail.

Validating model
attributes by explicitly calling validate method

The
following example listing shows the FixedDepositController’s openFixedDeposit method that uses FixedDepositDetailsValidator (refer example listing 11-24) to validate FixedDepositDetails model attribute:

Example listing 11-25 – FixedDepositController – validation by explicitly invoking FixedDepositDetailsValidator’s validate
method

Project – ch11-data-binding

Source location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

.....

public
class FixedDepositController {

.....

@RequestMapping(params = "fdAction=create", method =
RequestMethod.POST)

public String openFixedDeposit(

@ModelAttribute(value = "newFixedDepositDetails")
FixedDepositDetails fixedDepositDetails,

BindingResult bindingResult, SessionStatus sessionStatus) {

new FixedDepositDetailsValidator().validate(fixedDepositDetails,bindingResult);

if (bindingResult.hasErrors()) {

logger.info("openFixedDeposit() method: Validation errors

- re-displaying form for opening a new fixed deposit");

return "createFixedDepositForm";

}

.....

}

}

The above
example listing shows that the openFixedDeposit method creates an instance of FixedDepositDetailsValidator and
invokes its validate method. As BindingResult is a sub-interface of Errors, you can pass a BindingResult
object where Errors object is expected. The openFixedDeposit method passes the fixedDepositDetails model attribute and the BindingResult object to the validate
method. As BindingResult already contains data binding errors, passing BindingResult
object to validate method adds validation errors also to the BindingResult
object.

Invoking
model attributes validation using JSR 303’s @Valid annotation

You can
instruct Spring to automatically validate a model attribute argument passed to
a @RequestMapping method by adding JSR 303’s @Valid annotation to the model
attribute argument, and setting the validator for the model attribute on the WebDataBinder
instance.

The
following example listing shows how FixedDepositController’s openFixedDeposit method can use @Valid annotation to validate FixedDepositDetails model attribute:

Example listing 11-26 – FixedDepositController – invoking validation using @Valid annotation

import
javax.validation.Valid;

.....

public
class FixedDepositController {

.....

@RequestMapping(params = "fdAction=create", method =
RequestMethod.POST)

 public
String openFixedDeposit(

 @Valid @ModelAttribute(value = "newFixedDepositDetails")
FixedDepositDetails

fixedDepositDetails, BindingResult bindingResult, SessionStatus
sessionStatus) {

if (bindingResult.hasErrors()) {

logger.info("openFixedDeposit() method:

Validation errors - re-displaying form for opening a new fixed deposit");

return "createFixedDepositForm";

}

.....

}

.....

 @InitBinder(value
= "newFixedDepositDetails")

public void initBinder_New(WebDataBinder webDataBinder) {

webDataBinder.registerCustomEditor(Date.class, new CustomDateEditor(

new SimpleDateFormat("MM-dd-yyyy"), false));

webDataBinder.setValidator(new FixedDepositDetailsValidator());

}

.....

}

In the
above example listing, the initBinder_New method calls WebDataBinder’s setValidator method to set FixedDepositDetailsValidator as the validator for newFixedDepositDetails model
attribute, and in the openFixedDeposit method the newFixedDepositDetails model attribute is annotated with JSR 303’s @Valid
annotation. When the openFixedDeposit method is invoked, both data binding and
validation are performed on the newFixedDepositDetails model attribute, and the results of data binding and validation are
made available via the BindingResult argument.

It is
important to note that if @InitBinder annotation specifies name of the model attribute, the validator set
on the WebDataBinder applies only to that particular model attribute. For instance, in
example listing 11-26, the FixedDepositDetailsValidator applies only to the newFixedDepositDetails model attribute. If a validator applies to multiple controllers in
the application, consider defining an @InitBinder method inside a @ControllerAdvice annotated class (or use WebBindingInitializer) to set a
validator on the WebDataBinder.

Let’s now
look at how constraints are specified on properties of JavaBeans component
using JSR 303 annotations.

Specifying constraints using JSR 303 annotations

JSR 303
(Bean Validation API) defines annotations that you can use to specify
constraints on properties of JavaBeans components.

IMPORT chapter
11/ch11-jsr303-validation (This project shows a modified version of ch11-data-binding project that uses JSR 303 annotations to
specify constraints on FixedDepositDetails object. If you deploy the project on Tomcat server and access the
URL http://localhost:8080/ch11-jsr303-validation, you’ll see the list of fixed deposits in
the system.)

The
following example listing shows the FixedDepositDetails class that uses
JSR 303 annotations to specify constraints on its fields:

Example listing 11-27 – FixedDepositDetails – specifying JSR 303 constraints

Project – ch11-jsr303-validation

Source location - src/main/java/sample/spring/chapter11/domain

package
sample.spring.chapter11.domain;

import
javax.validation.constraints.*;

public
class FixedDepositDetails {

private long id;

 @Min(1000)

 @Max(500000)

private long depositAmount;

 @Email

 @Size(min=10,
max=25)

private String email;

 @NotNull

private Date maturityDate;

.....

}

@Min, @Max, @Email, @Size, and @NotNull are
some of the annotations defined by JSR 303. The above example listing shows
that by using JSR 303 annotations FixedDepositDetails class clearly
specifies the constraints that apply on its fields. On the other hand, if you
are using Spring’s Validator implementation to validate an object, constraints are contained in
the Validator implementation (refer example listing 11-24).

The following table describes the constraints enforced by JSR 303
annotations on the FixedDepositDetails object shown in example listing 11-27:

 	
 JSR 303 annotation

 	
 Constraint description

 	
 @NotNull

 	
 The annotated field must not be null. For instance, maturityDate field
 must not be null.

 	
 @Min

 	
 The annotated field’s value must be greater than or equal to the
 specified minimum value.

 For instance, @Min(1000) annotation on depositAmount field of FixedDepositDetails object means that depositAmount’s value must be greater than or equal to 1000.

 	
 @Max

 	
 The annotated field’s value must be less than or equal to the
 specified value.

 For instance, @Max(500000) annotation on depositAmount field of FixedDepositDetails object means that the depositAmount’s value must be less
 than or equal to 500000.

 	
 @Size

 	
 The annotated field’s size must be between the specified min and max
 attributes.

 For instance, @Size(min=5,
 max=100) annotation on email field
 of FixedDepositDetails object means that the size of the email field must be greater than or
 equal to 5 and less than or equal to 100.

 	
 @Email

 	
 The annotated field’s value must a well-formed email address.

 For instance, @Email annotation on the email field of FixedDepositDetails object means that the email field’s value must be a
 well-formed email address.

To use JSR 303 annotations, ch11-jsr303-validation project specifies dependency on JSR 303 API JAR
file (validation-api-1.0.0.GA) and Hibernate Validator framework (hibernate-validation-4.3.0.Final). The Hibernate Validator framework provides
the reference implementation for JSR 303. The Hibernate Validator framework
provides additional constraint annotations that you can use along with JSR 303
annotations. For instance, you can use Hibernate Validator’s @NotBlank annotation to specify that a field’s value must not be null or empty.

It is
important to note that JSR 303 also allows you to create custom constraints and
use them in your application. For instance, you can create a @MyConstraint
custom constraint and a corresponding validator to enforce that constraint on
objects.

Now, that
we have specified JSR 303 constraints on FixedDepositDetails class, let’s look
at how to validate FixedDepositDetails object.

Validating objects that use JSR 303 annotations

If a JSR
303 provider (like Hibernate Validator) is found in the application’s
classpath, and you have specified <annotation-driven> element of
Spring’s mvc schema in the web application context XML file, then Spring
automatically enables support for JSR 303. Behind the scenes, the <annotation-driven> element configures an instance of Spring’s LocalValidatorFactoryBean class that is responsible for detecting the presence of a JSR 303
provider (like Hibernate Validator) in the application’s classpath and
initializing it.

LocalValidatorFactoryBean implements JSR 303’s Validator and ValidatorFactory interfaces, and also Spring’s Validator interface. For this reason,
you can choose to validate an object by calling validate method of Spring’s Validator
interface or by calling validate method of JSR 303’s Validator. As discussed earlier, you can also instruct Spring to
automatically validate a model attribute argument passed to a @RequestMapping method by simply adding @Valid annotation on the model
attribute argument.

Validating model
attributes by explicitly calling validate method

The
following example listing shows the FixedDepositController class that
uses Spring’s Validator to validate the FixedDepositDetails object (refer example listing 11-27) that uses JSR 303’s
constraints:

Example listing 11-28 – FixedDepositController – validating FixedDepositDetails using Spring Validation API

Project – ch11-jsr303-validation

Source location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

import
javax.validation.Valid;

.....

public
class FixedDepositController {

.....

 @Autowired

 private
Validator validator;

.....

@RequestMapping(params = "fdAction=create", method =
RequestMethod.POST)

public String openFixedDeposit(

@ModelAttribute(value = "newFixedDepositDetails") FixedDepositDetails
fixedDepositDetails,

BindingResult bindingResult, SessionStatus sessionStatus) {

validator.validate(fixedDepositDetails, bindingResult);

if (bindingResult.hasErrors()) { }

}

.....

}

In the
above example listing, the LocalValidatorFactoryBean (that implements Spring’s Validator interface) is autowired
into FixedDepositController’s validator instance variable. In the openFixedDeposit method, call to Validator’s validate method
results in invocation of LocalValidatorFactoryBean’s validate(Object,
Errors) method to validate the FixedDepositDetails instance. The BindingResult object is passed to the validate method to hold the
validation errors. An important point to notice in the above example listing is
that the FixedDepositController doesn’t directly deal with JSR 303-specific API to validate FixedDepositDetails object. Instead, Spring Validation API is used to validate FixedDepositDetails object.

The
following example listing shows an alternate version of FixedDepositController that uses JSR 303-specific API to validate FixedDepositDetails object:

Example listing 11-29 – FixedDepositController – validating FixedDepositDetails using JSR 303-specific API

import
javax.validation.ConstraintViolation;

import
javax.validation.Validator;

import
java.util.Set;

.....

public
class FixedDepositController {

.....

 @Autowired

 private
Validator validator;

.....

@RequestMapping(params = "fdAction=create", method =
RequestMethod.POST)

public String openFixedDeposit(

@ModelAttribute(value = "newFixedDepositDetails") FixedDepositDetails
fixedDepositDetails,

BindingResult bindingResult, SessionStatus sessionStatus) {

Set<ConstraintViolation<FixedDepositDetails>> violations =

validator.validate(fixedDepositDetails);

Iterator<ConstraintViolation<FixedDepositDetails>> itr =
violations.iterator();

if(itr.hasNext()) { }

}

.....

}

In the
above example listing, the LocalValidatorFactoryBean (that implements JSR 303’s Validator interface) is autowired
into FixedDepositController’s validator instance variable. In the openFixedDeposit method, call to Validator’s validate method
results in invocation of LocalValidatorFactoryBean’s validate(T) method to validate the FixedDepositDetails instance. The validate
method returns a java.util.Set object that contains the constraint violations reported by the JSR
303 provider. You can check the java.util.Set object returned by the validate method to find if any constraint
violations were reported.

Invoking
model attributes validation using JSR 303’s @Valid annotation

You can
instruct Spring to automatically validate a model attribute argument passed to
a @RequestMapping method by adding JSR 303’s @Valid annotation to the model
attribute argument. The following example listing shows FixedDepositController’s editFixedDeposit method that uses @Valid annotation to validate editableFixedDepositDetails model
attribute:

Example listing 11-30 – FixedDepositController – invoking validation using @Valid annotation

Project – ch11-jsr303-validation

Source location - src/main/java/sample/spring/chapter11/web

package
sample.spring.chapter11.web;

import
javax.validation.Valid;

.....

public
class FixedDepositController {

.....

@RequestMapping(params = "fdAction=edit", method =
RequestMethod.POST)

public String editFixedDeposit(

 @Valid
@ModelAttribute("editableFixedDepositDetails") FixedDepositDetails
fixedDepositDetails,

 BindingResult bindingResult, SessionStatus sessionStatus) {

if (bindingResult.hasErrors()) { }

}

.....

}

In the
above example listing, @Valid annotation on editableFixedDepositDetails model attribute results in its automatic validation by Spring. The
constraint violations reported during validation are added to the BindingResult
object along with any data binding errors.

Let’s now
look at how Spring’s form tag library simplifies writing forms in JSP pages.

11-6 Spring’s form tag library

Spring’s form tag
library provides tags that simplify creating JSP pages for Spring Web MVC
applications. The Spring’s form tag library provides tags to render various input form elements and
for binding form data to form backing objects.

The
following example listing shows the createFixedDepositForm.jsp JSP page
of ch11-jsr303-validation project that uses Spring’s form tag library tags:

Example listing 11-31 – createFixedDepositForm.jsp – Spring’s form tag library usage

Project – ch11-jsr303-validation

Source location - src/main/webapp/WEB-INF/jsp

<%@taglib
uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>

<%@taglib
prefix="form" uri="http://www.springframework.org/tags/form"%>

<html>

.....

 <form:form
commandName="newFixedDepositDetails"

name="createFixedDepositForm" method="POST"

action="${pageContext.request.contextPath}/fixedDeposit?fdAction=create">

.....

<tr>

<td class="td">Amount (in USD):</td>

<td class="td"><form:input path="depositAmount"
/>

<form:errors
path="depositAmount"/>

</td>

</tr>

<tr>

 <td
class="td">Maturity date:</td>

<td class="td"><form:input path="maturityDate"
/>

<form:errors
path="maturityDate"/></td>

</tr>

.....

<td class="td"><input type="submit"
value="Save" />

.....

</form:form>

</html>

In the
above example listing, the following taglib directive makes the Spring’s form tag
library tags accessible to the JSP page:

<%@taglib prefix="form" uri="http://www.springframework.org/tags/form"%>

Spring’s
form tag library’s <form> tag renders an HTML form that binds form fields to the properties of
model attribute identified by the commandName attribute. The <form>
tag contains <input> tags that correspond to the properties of the model attribute
specified by the commandName attribute. When the form is rendered, properties are read from the
model attribute and displayed by <input> tags. And, when the form is submitted, the field values in the form are
bound to the corresponding properties of the model attribute.

In example
listing 11-31, the <form> tag renders an HTML form for opening a fixed deposit. The commandName
attribute’s value is newFixedDepositDetails, which means that the form fields are mapped to the properties of
the newFixedDepositDetails model attribute. The name attribute specifies the name of
the HTML form rendered by the <form> tag. The method attribute specifies the HTTP method to use for sending form data
when the form is submitted. The action attribute specifies the URL to which the form data is sent when the
form is submitted. The URL specified by the action attribute must map to a unique
@RequestMapping annotated method in your Spring Web MVC application. In example
listing 11-31, the URL ${pageContext.request.contextPath}/fixedDeposit?fdAction=create maps to FixedDepositController’s openFixedDeposit method (refer FixedDepositController.java file of ch11-jsr303-validation project). You should note that the expression ${pageContext.request.contextPath} returns the context
path of the web application.

The <input> tag
of Spring’s form tag library renders an HTML <input> element with type attribute
set to text. The path attribute specifies the property of the model attribute to which
the field is mapped. When the form is rendered, the value of the property is
displayed by the input field. And, when the form is submitted, the value of the
property is set to the value entered by the user in the input field.

The <errors>
tag of Spring’s form tag library shows data binding and validation error messages that
were added to the BindingResult during data binding and validation. If you want to display error
messages corresponding to a particular property, specify the name of the
property as the value of the path attribute. If you want to display all the error messages stored in
the BindingResult object, specify value of path attribute as *.

The createFixedDepositForm.jsp page uses only a subset of Spring’s form tag library tags. The following
table shows the other tags that Spring’s form tag library offers:

 	
 Tag

 	
 Description

 	
 <checkbox>

 	
 Renders an HTML checkbox (that is, <input type="checkbox" />)

 As the value of an HTML checkbox is not
 sent to the server if the checkbox is unchecked, the <checkbox> tag additionally renders a hidden field corresponding to each
 checkbox to allow sending the state of the checkbox to the server.

 Example: <form:checkbox
 path="myProperty"
 />

 The path attribute specifies the name of the property to which the
 checkbox value is bound.

 	
 <checkboxes>

 	
 Renders multiple HTML checkboxes.

 Example: <form:checkboxes
 path="myPropertyList" items="${someList}"/>

 The path attribute specifies the name of the property to which the selected
 checkboxes values are bound. The items attribute specifies the name
 of the model attribute that contains the list of options to show as
 checkboxes.

 	
 <radiobutton>

 	
 Renders an HTML radio button (that is, <input type="radio"
 />)

 Example: <form:radiobutton
 path="myProperty" value="myValue"/>

 The path attribute specifies the name of the property to which the radio
 button is bound, and the value attribute specifies the value assigned to the radio button.

 	
 <radiobuttons>

 	
 Renders multiple HTML radio buttons.

 Example: <form:radiobuttons
 path="myProperty" items="${myValues}"/>

 The items attribute specifies the list of options to show as radio buttons,
 and the path attribute specifies the property to which the selected radio
 buttons values are bound.

 	
 <password>

 	
 Renders an HTML password field (that is, <input type="password"/>)

 	
 <select>

 	
 Renders an HTML <select> element.

 Example: <form:select
 path="book" items="${books}"/>

 The items attribute specifies the model attribute property that contains
 the list of options to display in the HTML <select> element. The path
 attribute specifies the property to which the selected option is bound.

 	
 <option>

 	
 Renders an HTML <option> element.

 Example:

 <form:select path="book">

 <form:option value="Getting
 started with Spring Framework"/>

 <form:option value="Getting
 started with Spring Web MVC"/>

 </form:select>

 	
 <options>

 	
 Renders multiple HTML <option> elements.

 	
 <textarea>

 	
 Renders an HTML <textarea> element.

 	
 <hidden>

 	
 Renders an HTML hidden input field (that is, <input type="hidden"
 />)

Let’s now
look at HTML5 support in Spring’s form tag library.

HTML5 support in Spring’s form
tag library

Starting
with Spring 3.0, the form tag library allows you to use HTML5-specific attributes in the
tags. For instance, the following <textarea> tag uses HTML5’s required
attribute:

<form:textarea
path="myProperty" required="required"/>

The required="required" attribute specifies that it is mandatory for the user to enter
information in the textarea. The use of required attribute saves the effort
to write the JavaScript code to perform client-side validation for mandatory
fields. If the user doesn’t enter any information in the textarea and attempts
to submit the form, the web browser shows a message saying that the textarea is
required and must not be left blank.

In HTML5
you can specify type attribute’s value as email, datetime, date, month, week, time, range, color, reset, and so
on. Starting with Spring 3.1, <input> tag supports specifying type attribute value other than text. For
instance, the following <input> tag specifies type attribute’s value as email:

<form:input path="myProperty" type="email"/>

When a
user attempts to submit the form containing a field of type email, the web
browser checks that the email type field contains a valid email address. If the email type
field doesn’t contain a valid email address, the web browser shows a message
indicating that the field doesn’t contain a valid email address. As the web
browser performs the validation, you don’t need to write the JavaScript code to
validate the email address.

11-7 Summary

We looked
at many core features of Spring Web MVC in this chapter. We looked at @ModelAttribute and @SessionAttributes annotations which are most commonly used in developing annotated
controllers. We also took an in-depth look at how Spring performs data binding
and validation. In the next chapter, we’ll look at how to develop RESTful web
services using Spring Web MVC.

Chapter 12 –Developing RESTful web services
using Spring Web MVC

12-1 Introduction

Representational State Transfer (also referred to as REST) is an architectural-style in which an application defines resources that are uniquely identified by URIs (Uniform Resource Identifier). The clients of a REST-style application interact with a resource
by sending HTTP GET, POST, PUT and DELETE method requests to the URI to which the resource is mapped. The
following figure shows a REST-style application that is accessed by its
clients:

Figure 12-1 REST-style
application defines x and y resources that are uniquely identified by /resource2 and
/resource1 URIs, respectively.

The above
figure shows a REST-style application that consists of two resources – x and y. The
resource x is mapped to /resource2 URI and the y resource is mapped to /resource1 URI. A client can
interact with resource x by sending HTTP requests to /resource2 URI, and can interact with
resource y by sending HTTP requests to /resource1 URI.

If a web
service follows the REST architectural-style, it is referred to as a RESTful web service. In the context of RESTful web services, you can think of a resource as the data
exposed by the web service. The client can perform CRUD (CREATE, READ, UPDATE
and DELETE) operations on the exposed data by sending HTTP requests to the
RESTful web service. The client and the RESTful web service exchange representation of the data, which could be in XML, JSON (JavaScript Object Notation)
format, or a simple string, or any other MIME type supported by the HTTP
protocol.

RESTful
web services are simpler to implement and are more scalable compared to
SOAP-based web services. In SOAP-based web services, requests and responses are
always in XML format. In RESTful web services, you can use JSON (JavaScript
Object Notation), XML, plain text, and so on, for requests and responses. In
this chapter, we’ll look at how Spring Web MVC simplifies developing and
accessing RESTful web services.

Let’s begin
by looking at the requirements of a RESTful web service that we’ll implement
using Spring Web MVC.

12-2 Fixed deposit web service

We saw
earlier that the MyBank web application provides the functionality to display a
list of fixed deposits, and to create, edit and close fixed deposits. As the
fixed deposit related functionality may also be accessed by other applications,
the fixed deposit related functionality needs to be taken out from the MyBank
web application and deployed as a RESTful web service. Let’s call this new
RESTful web service as FixedDepositWS.

The
following figure shows that the FixedDepositWS web service is accessed by
MyBank and Settlement applications:

Figure 12-2 MyBank and Settlement
applications access FixedDepositWS web service

The above
figure shows that MyBank and Settlement web applications interact with FixedDepositWS
web service by exchanging data in JSON format. We’ll soon see that JSON represents
a simpler alternative to XML for exchanging data between applications.

Let’s now
look at how to implement FixedDepositWS web service as a RESTful web service
using Spring Web MVC.

12-3 Implementing a RESTful web service using Spring Web MVC

To develop
a RESTful web service, you need to do the following:

·
identify resources that are exposed by the web
service

·
specify URIs corresponding to the identified
resources

·
identify operations that can be performed on the
resources

·
map HTTP methods to the identified operations

In case of
FixedDepositWS web service, fixed deposit data represents the resource exposed
by the web service. If the FixedDepositWS web service maps fixed deposits in
the system to /fixedDeposits URI, a FixedDepositWS web service client can perform actions on
fixed deposits by sending HTTP requests to /fixedDeposits URI.

In RESTful
web service, the HTTP method used by clients for interacting with a resource
indicates the operation to be performed on the resource. GET retrieves
the resource state, POST creates a new resource, PUT modifies the resource state and DELETE deletes
the resource. The following figures shows the actions performed by the FixedDepositWS
web service when a client sends GET, POST, PUT and DELETE HTTP requests to the /fixedDeposits URI:

Figure 12-3 HTTP requests are
sent by the FixedDepositWS’s client to /fixedDeposits URI to interact with
fixed deposit data

The above figure shows that the client of FixedDepositWS web service
sends GET, POST, PUT and DELETE HTTP requests to /fixedDeposits URI to interact with the fixed deposit data. The id query
string parameter uniquely identifies a fixed deposit in the system. The
following table defines the purpose of each request shown in the above figure:

 	
 HTTP method

 	
 URI

 	
 Purpose

 	
 GET

 	
 /fixedDeposits

 	
 Retrieve details of all the fixed deposits in the system. The
 FixedDepositWS web service sends the response in JSON format.

 	
 GET

 	
 /fixedDeposits?id=123

 	
 Retrieve details of the fixed deposit whose id is 123. The FixedDepositWS web service sends the response in JSON format.

 	
 POST

 	
 /fixedDeposits

 	
 Create a new fixed deposit in the system. The web service client
 sends the details of the fixed deposit to be created in JSON format.

 	
 PUT

 	
 /fixedDeposits?id=123

 	
 Modifies the fixed deposit whose id is 123. The web service client sends the modified details of the fixed
 deposit in JSON format.

 	
 DELETE

 	
 /fixedDeposits?id=123

 	
 Removes the fixed deposit whose id is 123.

The above
table shows that the FixedDepositWS and its clients exchange information in
JSON format. Before delving into the details of how to implement
FixedDepositWS, let’s look at how the data looks like in JSON format.

JSON (JavaScript Object Notation)

JSON is a
text-based data format that is used by applications for exchanging structured data. As JSON representation of data is more compact compared to
XML, JSON serves as a simpler alternative to XML. To simplify conversion of
Java objects to JSON and vice versa, you can use JSON libraries like FlexJson (http://flexjson.sourceforge.net/)
and Jackson (https://github.com/FasterXML/jackson).

Let’s say
a Person class defines firstName and lastName attributes. If you create an instance of Person object
and set firstName to Myfirstname and lastName to Mylastname, the representation of the Person object in JSON format would
look like this:

Example listing 12-1 – Person object
representation in JSON format

{

"firstName" : Myfirstname,

"lastName" : "Mylastname"

}

The above
example listing shows that each attribute of Person object is represented as <attribute-name> : <attribute-value> in JSON format.

You can
also represent a collection of Java objects in JSON format. The following
example listing shows how you can represent a collection of Person objects
in JSON format:

Example listing 12-2 – Collection
of Person objects represented in JSON format

[

 {

"firstName" : Myfirstname,

"lastName" : "Mylastname"

 },

 {

"firstName" : Yourfirstname,

"lastName" : "Yourlastname"

 }

]

You don’t
need to write code to convert an object into JSON representation and vice
versa. Instead, the RESTful web service and its clients can make use of
FlexJson or Jackson library to perform conversion. As we’ll soon see, Spring
Web MVC uses Jackson for converting JSON to Java objects and vice versa.

Let’s now
look at the implementation of FixedDepositWS web service using Spring Web MVC.

IMPORT chapter
12/ch12-webservice (This project shows the implementation of FixedDepositWS RESTful web
service using Spring Web MVC. Later in this chapter, we’ll see how
FixedDepositWS web service is accessed by its clients.)

FixedDepositWS web service implementation

Spring Web
MVC annotations, like @Controller, @RequestMapping, @RequestParam, @PathVariable @ResponseBody, @RequestBody, and so on, support building RESTful web services. In this section,
we’ll look at usage of some of these annotations in developing the
FixedDepositWS web service.

In
FixedDepositWS web service, the FixedDepositController (a Spring Web MVC controller) is responsible for handling web service
requests. FixedDepositController is like any other Spring Web MVC controller with the exception that
its @RequestMapping methods don’t render views. The following example listing shows that @Controller and
@RequestMapping annotations are used to map web requests to appropriate methods of FixedDepositController class:

Example listing 12-3 – FixedDepositController – web service request handler

Project – ch12-webservice

Source
location - src/main/java/sample/spring/chapter12/web

package sample.spring.chapter12.web;

import
org.springframework.http.ResponseEntity;

.....

@Controller

@RequestMapping(value
= "/fixedDeposits")

public
class FixedDepositController {

 @RequestMapping(method
= RequestMethod.GET)

 public
ResponseEntity<List<FixedDepositDetails>> getFixedDepositList()
{ }

 @RequestMapping(method
= RequestMethod.GET, params = "id")

 public
ResponseEntity<FixedDepositDetails>
getFixedDeposit(@RequestParam("id") int id) { }

}

The getFixedDepositList method returns the list of fixed deposits in the system, and the getFixedDeposit method returns details of the fixed deposit identified by the id argument.
The above example listing shows that the @RequestMapping annotation is used at
the class- and method-level to map requests to getFixedDepositList and getFixedDeposit methods. The getFixedDepositList method is invoked when a client application sends an HTTP GET request to
/fixedDeposits URI, and the getFixedDeposit method is invoked when a client application sends an HTTP GET request
containing id request parameter to /fixedDeposits URI. So, if the
request URI is /fixedDeposits?id=123, the getFixedDeposit method is invoked.

The following table summarizes the mapping of request URIs and HTTP
methods to the methods defined in the FixedDepositController class:

 	
 HTTP method

 	
 URI

 	
 FixedDepositController method

 	
 GET

 	
 /fixedDeposits

 	
 getFixedDepositList

 	
 GET

 	
 /fixedDeposits?id=123

 	
 getFixedDeposit

 	
 POST

 	
 /fixedDeposits

 	
 openFixedDeposit

 	
 PUT

 	
 /fixedDeposits?id=123

 	
 editFixedDeposit

 	
 DELETE

 	
 /fixedDeposits?id=123

 	
 closeFixedDeposit

We saw in
chapter 10 and 11 that @RequestMapping annotated methods return view information that is used by the DispatcherServlet to render a view (like JSP or servlet). In RESTful web services, @RequestMapping methods return data (and not the view
information) to the client applications. For this reason, the getFixedDepositList and getFixedDeposit methods have been defined to return objects of type ResponseEntity.
Let’s now look at the usage of ResponseEntity object in the FixedDepositController class.

Specifying
HTTP response using ResponseEntity

ResponseEntity represents an HTTP
response consisting of headers, body and status code. The object that you set
as body on the ResponseEntity object is written to the HTTP response body by Spring Web MVC.

The
following example listing shows how the ResponseEntity object is created by FixedDepositController’s getFixedDepositList method:

Example listing 12-4 – FixedDepositController – creating ResponseEntity instance

Project – ch12-webservice

Source
location - src/main/java/sample/spring/chapter12/web

package sample.spring.chapter12.web;

import
org.springframework.http.HttpStatus;

import
org.springframework.http.ResponseEntity;

.....

public
class FixedDepositController {

@RequestMapping(method = RequestMethod.GET)

public ResponseEntity<List<FixedDepositDetails>>
getFixedDepositList() {

.....

 return
new ResponseEntity<List<FixedDepositDetails>>(

fixedDepositService.getFixedDeposits(), HttpStatus.OK);

 }

}

In the
above example listing, the fixed deposit list passed to the ResponseEntity constructor is
written to the HTTP response body. The HttpStatus
is an enum type
that defines HTTP status codes. The constant OK
refers to the HTTP status code 200.
Notice that the return type of the getFixedDepositList
method is ResponseEntity<List<FixedDepositDetails>>,
which means that an object of type List<FixedDepositDetails>
is
written to the HTTP response body. Spring Web MVC uses an appropriate HttpMessageConverter (explained
in section 12-5) to convert the List<FixedDepositDetails>
object into the format expected by the client application.

NOTE
Later in this chapter, we’ll see that client applications can use Spring’s RestTemplate to invoke methods defined in the FixedDepositController and to retrieve the objects written to the HTTP
response body.

All the @RequestMapping
annotated methods of FixedDepositController
class define ResponseEntity
as their return type. If you don’t
need to send HTTP status code in the response, you can use Spring’s HttpEntity class
instead of ResponseEntity.
HttpEntity
represents an HTTP request or response, and ResponseEntity
is a subclass of HttpEntity
that adds an HTTP status code to the response.

The
following example listing shows a modified version of getFixedDepositList
method that creates and returns an instance of HttpEntity:

Example listing 12-5 – FixedDepositController – using HttpEntity instead of ResponseEntity

import
org.springframework.http.HttpStatus;

import
org.springframework.http.HttpEntity;

.....

public
class FixedDepositController {

@RequestMapping(method = RequestMethod.GET)

public HttpEntity<List<FixedDepositDetails>>
getFixedDepositList() {

.....

 return
new HttpEntity<List<FixedDepositDetails>>(fixedDepositService.getFixedDeposits());

 }

}

The above
example listing shows that the fixed deposits found in the system are passed to
the HttpEntity
constructor. As in case of ResponseEntity (refer
example listing 12-4), fixed deposits passed to the HttpEntity
are written to the HTTP response body.

Both HttpEntity
and ResponseEntity objects
allow you to set HTTP response headers. The following example listing shows a
scenario in which some-header
header is set on the HTTP response:

Example listing 12-6 – HttpHeaders
usage

import
org.springframework.http.HttpHeaders;

.....

@RequestMapping(method = RequestMethod.GET)

public HttpEntity<String> doSomething() {

 HttpHeaders
responseHeaders = new HttpHeaders();

 responseHeaders.set("some-header",
"some-value");

return new HttpEntity<String>("Hello world !", responseHeaders);

 }

.....

Spring’s HttpHeaders object
contains the headers that are set on the HTTP response. In the above example
listing, HttpHeader’s
set method
sets some-header response
header (with value some-value). When the doSomething method is invoked, the ‘Hello world !’ string is written to
the response body, and some-header header is written to the HTTP response.

As @RequestMapping methods can be defined to accept HttpServletResponse object as
argument, let’s look at how you can directly set response body and headers on
the HttpServletResponse object.

Specifying
HTTP response using HttpServletResponse

The
following example listing shows a @RequestMapping
method which writes directly to the HttpServletResponse
object:

Example listing 12-7 – Setting
response on HttpServletResponse

import
javax.servlet.http.HttpServletResponse;

.....

@RequestMapping(method = RequestMethod.GET)

public void doSomething(HttpServletResponse response) throws IOException
{

 response.setHeader("some-header",
"some-value");

 response.setStatus(200);

 response.getWriter().write("Hello
world !");

 }

.....

Instead
of directly writing response to HttpServletResponse, you should
use ResponseEntity (or HttpEntity)
object to improve the testability of the controllers.

Let’s now
look at Spring’s @ResponseBody
method-level annotation that writes the return value of the method to HTTP
response body.

NOTE As of
Spring 4.0, @ResponseBody annotation can
also be specified at the class level. If @ResponseBody annotation is specified
at the class level, it is inherited by the @RequestMapping methods of the
controller.

Binding
returned value of a method to HTTP response body using @ResponseBody

The
following example listing shows usage of @ResponseBody
annotation:

Example listing 12-8 – @ResponseBody
annotation usage

import
org.springframework.web.bind.annotation.ResponseBody;

.....

@RequestMapping(method = RequestMethod.GET)

 @ResponseBody

public String doSomething() {

 return
"Hello world !";

 }

.....

In the
above example listing, the ‘Hello world !’
string value returned by the doSomething
method is written to the HTTP response body. In section 10-7 of chapter 10, we
discussed that if the return type of a @RequestMapping
annotated method is String,
the returned value is treated as the name of the view
to render. In the above example listing, the @ResponseBody
annotation on the doSomething
method instructs Spring Web MVC to write the string value to the HTTP response
body instead of treating the string value as the view name. You should note
that Spring uses an appropriate HttpMessageConverter
(explained in section 12-5) implementation to write the value returned by the @ResponseBody annotated method to
the HTTP response body.

Now, that
we have seen different ways in which a @RequestMapping
method can write to the HTTP response, let’s look at how a @RequestMapping method
can read information from the HTTP request body using @RequestBody
annotation.

Binding HTTP
request body to a method parameter using @RequestBody

A @RequestMapping
annotated method can use @RequestBody
method-parameter level annotation to bind HTTP request body to the method
parameter. Spring Web MVC uses an appropriate HttpMessageConverter
(explained in section 12-5) implementation to convert the HTTP request body to
the method parameter type. The following example listing shows usage of @RequestBody annotation in
MyBank application’s FixedDepositController:

Example listing 12-9 – @RequestBody
annotation usage

Project – ch12-webservice

Source
location - src/main/java/sample/spring/chapter12/web

package
sample.spring.chapter12.web;

.....

import
org.springframework.web.bind.annotation.RequestBody;

.....

@Controller

@RequestMapping(value
= "/fixedDeposits")

public
class FixedDepositController {

@RequestMapping(method = RequestMethod.POST)

public ResponseEntity<FixedDepositDetails> openFixedDeposit(

@RequestBody FixedDepositDetails fixedDepositDetails,

 BindingResult bindingResult) {

 new
FixedDepositDetailsValidator().validate(fixedDepositDetails, bindingResult);

.....

 }

}

In the above
example listing, the FixedDepositDetails
type method argument is annotated with @RequestBody
annotation. Spring Web MVC is responsible for converting the HTTP request body
to FixedDepositDetails
type object. In the above example listing, FixedDepositDetailsValidator
class is an implementation of Spring’s Validator
interface that validates the FixedDepositDetails
object before attempting to create the fixed deposit.

An
alternative to using @RequestBody
annotation is to directly read HTTP request body from the HttpServletRequest object
and convert the request body content to the Java type required by the method.
Spring’s @RequestBody
annotation simplifies the conversion because it uses an appropriate HttpMessageConverter
implementation to convert HTTP request body to the object type expected by the @RequestMapping method.

Let’s now
look at the @ResponseStatus
annotation that allows you to set HTTP response status.

Setting HTTP
response status using @ResponseStatus

You can
use the @ResponseStatus
annotation to specify the HTTP response status returned by a @RequestMapping method.
The following example listing shows usage of @ResponseStatus
annotation:

Example listing 12-10 – @ResponseStatus annotation usage

import org.springframework.web.bind.annotation.ResponseStatus;

public
class SomeController {

@RequestMapping(method = RequestMethod.GET)

 @ResponseStatus(value
= HttpStatus.OK)

@ResponseBody

public SomeObject doSomething() {

.....

 }

}

As the doSomething method is annotated
with @ResponseBody
annotation, the SomeObject
returned by the doSomething
method is written to the HTTP response body. And, the @ResponseStatus
annotation sets the HTTP response status code to 200 (represented by
HttpStatus.OK constant).

Let’s now
look at how the @ExceptionHandler
annotation is used in FixedDepositWS web service to handle exceptions.

Handling
exceptions using @ExceptionHandler

In
section 10-9 of chapter 10, we saw that the @ExceptionHandler
annotation identifies a controller method that is responsible for handling
exceptions. Like @RequestMapping
methods, @ExceptionHandler
methods in RESTful web services are annotated with @ResponseBody
annotation or the return type is defined as ResponseEntity (or HttpEntity).

The
following example listing shows usage of @ExceptionHandler
annotation in FixedDepositController
class of ch12-webservice
project:

Example listing 12-11 – @ExceptionHandler annotation usage

Project – ch12-webservice

Source
location - src/main/java/sample/spring/chapter12/web

package
sample.spring.chapter12.web;

import
sample.spring.chapter12.exception.ValidationException;

.....

public
class FixedDepositController {

 @ExceptionHandler(ValidationException.class)

@ResponseBody

 @ResponseStatus(value
= HttpStatus.BAD_REQUEST)

public String handleException(Exception ex) {

logger.info("handling ValidationException " + ex.getMessage());

return ex.getMessage();

 }

}

@ExceptionHandler
annotation on handleException
method indicates that the handleException
method is invoked when ValidationException
is thrown by the FixedDepositController
during request processing. As the handleException
method is also annotated with @ResponseBody
annotation, the exception message returned by the handleException
method is written to the HTTP response body. @ResponseStatus
on the handleException
method results in setting the HTTP response status code to 400 (represented by HttpStatus.BAD_REQUEST
constant).

In this
section, we saw how to implement FixedDepositWS web service using Spring Web
MVC. Let’s now look at how to access FixedDepositWS web service using Spring’s RestTemplate.

12-4 Accessing RESTful web services using
RestTemplate

Spring’s RestTemplate
class simplifies accessing RESTful web services by taking care of managing HTTP
connections and handling HTTP errors.

IMPORT chapter
12/ch12-webservice-client (This project represents a standalone Java application that accesses
FixedDepositWS RESTful web service using Spring’s RestTemplate
(for synchronously accessing the web service) and AsyncRestTemplate (for asynchronously accessing the web service) class. The ch12-webservice-client project assumes that the ch12-webservice project representing
the FixedDepositWS RESTful web service is deployed at http://localhost:8080/ch12-webservice
URL.)

RestTemplate configuration

The
following example listing shows how RestTemplate
is configured in the application context XML file of ch12-webservice-client
project:

Example listing 12-12 – applicationContext.xml - RestTemplate configuration

Project – ch12-webservice-client

Source
location - src/main/resources/META-INF/spring

<beans
.....>

<bean id="restTemplate" class="org.springframework.web.client.RestTemplate">

<property name="errorHandler" ref="errorHandler"
/>

</bean>

<bean id="errorHandler" class="sample.spring.chapter12.MyErrorHandler"
/>

</beans>

RestTemplate’s errorHandler
property refers to an implementation of Spring’s ResponseErrorHandler interface that
inspects the HTTP response for errors and handles the response in case of
errors. DefaultResponseErrorHandler is the default implementation of ResponseErrorHandler interface that
is provided out-of-the-box by Spring. If you don’t specify the errorHandler
property, Spring uses the DefaultResponseErrorHandler implementation. The above example listing shows that the RestTemplate
uses a custom response error handler, MyErrorHandler.

The
following example listing shows the implementation of MyErrorHandler
class:

Example listing 12-13 – MyErrorHandler
class – HTTP response error handler

Project – ch12-webservice-client

Source
location - src/main/java/sample/spring/chapter12

package
sample.spring.chapter12;

import
org.apache.commons.io.IOUtils;

import
org.springframework.http.client.ClientHttpResponse;

import
org.springframework.web.client.DefaultResponseErrorHandler;

public
class MyErrorHandler extends DefaultResponseErrorHandler {

private static Logger logger = Logger.getLogger(MyErrorHandler.class);

@Override

public void handleError(ClientHttpResponse response) throws IOException {

logger.info("Status code received from the web service : " + response.getStatusCode());

 String
body = IOUtils.toString(response.getBody());

logger.info("Response body: " + body);

 super.handleError(response);

 }

}

The above
example listing shows that the MyErrorHandler
class extends DefaultResponseErrorHandler
class and overrides the handleError
method. If the HTTP response’s status code indicates an error, the handleError method is
responsible for handling the response. The ClientHttpResponse
argument to the handleError
method represents the HTTP response received from calling the RESTful web service.
The call to ClientHttpResponse’s
getBody method
returns the body of HTTP response as an InputStream
object. MyErrorHandler’s handleError method logs
information about the status code and the body of the HTTP response, and
delegates handling of the error to DefaultResponseErrorHandler’s
handleError method.
The above example listing shows that the MyErrorHandler
class uses Apache Commons IO’s IOUtils
class to get the content of the HTTP response
body as
a String.

Now, that
we have seen how a RestTemplate
class is configured, let’s look at how RestTemplate
is used by client applications to access RESTful web services.

Accessing
FixedDepositWS web service using RestTemplate

The
following example listing shows the FixedDepositWSClient
class that uses RestTemplate
to access FixedDepositWS web service:

Example listing 12-14 – FixedDepositWSClient
class – RestTemplate usage

Project – ch12-webservice-client

Source
location - src/main/java/sample/spring/chapter12

package
sample.spring.chapter12;

.....

import
org.springframework.web.client.RestTemplate;

public
class FixedDepositWSClient {

private static ApplicationContext context;

 public
static void main(String args[]) {

context = new ClassPathXmlApplicationContext(

 "classpath:META-INF/spring/applicationContext.xml");

 getFixedDepositList(context.getBean(RestTemplate.class));

 getFixedDeposit(context.getBean(RestTemplate.class));

.....

 }

 private
static void getFixedDepositList(RestTemplate restTemplate) { }

}

The above
example listing shows that the FixedDepositWSClient’s main method performs the following actions:

§ bootstraps
the Spring container (represented by the ApplicationContext object)

§ calls
getFixedDepositList, getFixedDeposit, and so on, methods. These methods accept an instance of RestTemplate,
and are responsible for calling the FixedDepositWS web service.

The
following example listing shows the implementation of FixedDepositWSClient’s getFixedDepositList method that calls the FixedDepositWS web service deployed at http://localhost:8080/ch12-webservice
to obtain the list of fixed deposits in the system:

Example listing 12-15 – FixedDepositWSClient’s
getFixedDepositList method

Project – ch12-webservice-client

Source
location - src/main/java/sample/spring/chapter12

package
sample.spring.chapter12;

.....

import
org.springframework.core.ParameterizedTypeReference;

import
org.springframework.http.*;

import
org.springframework.web.client.RestTemplate;

public
class FixedDepositWSClient {

 private
static void getFixedDepositList(RestTemplate restTemplate) {

 HttpHeaders
headers = new HttpHeaders();

 headers.add("Accept",
"application/json");

 HttpEntity<String>
requestEntity = new HttpEntity<String>(headers);

 ParameterizedTypeReference<List<FixedDepositDetails>>
typeRef =

new ParameterizedTypeReference<List<FixedDepositDetails>>() {

};

ResponseEntity<List<FixedDepositDetails>> responseEntity = restTemplate

.exchange("http://localhost:8080/ch12-webservice/fixedDeposits",

HttpMethod.GET, requestEntity, typeRef);

List<FixedDepositDetails> fixedDepositDetails = responseEntity.getBody();

logger.info("List of fixed deposit details: \n" +
fixedDepositDetails);

 }

}

In the
above example listing, RestTemplate’s
exchange method
has been used to send HTTP GET
request to http://localhost:8080/ch12-webservice/fixedDeposits
URL. As the FixedDepositWS web service is deployed at http://localhost:8080/ch12-webservice
URL, sending HTTP GET request to http://localhost:8080/ch12-webservice/fixedDeposits
URL results in invocation of FixedDepositController’s
getFixedDepositList method. This is because the FixedDepositController’s
getFixedDepositList method is mapped to /fixedDeposits
URI (refer example listing 12-3 or FixedDepositController
class of ch12-webservice project).

In
example listing 12-15, the HttpEntity
object represents the request sent to the web service, the HttpHeaders object represents
the request headers in the request, and the ParameterizedTypeReference object represents the generic type of the
response received from the web service. The Accept request header’s value has
been set to application/json to specify that the response from the FixedDepositWS web service is
expected in JSON format. On the web service-side, the value of Accept header
is used by Spring Web MVC to choose an appropriate HttpMessageConverter to convert the value returned by the @ResponseBody annotated method into
the format specified by the Accept header. For instance, if the Accept header value is application/json, Spring Web MVC uses MappingJackson2HttpMessageConverter (an implementation of HttpMessageConverter) to convert the
value returned by the @ResponseBody annotated method into JSON format. The FixedDepositWSClient specifies the
value of Accept header as application/json; therefore, the value returned by FixedDepositController’s getFixedDepositList method is converted to JSON format.

The RestTemplate’s
exchange method
returns an instance of ResponseEntity
which represents the response returned by the web service. As the generic type of the response received from invocation of FixedDepositController’s getFixedDepositList is List<FixedDepositDetails>, an instance of ParameterizedTypeReference<List<FixedDepositDetails>> is created and passed to the exchange method. You
can call ResponseEntity’s getBody
method to retrieve the response returned by the web service. In example listing
12-15, ResponseEntity’s
getBody method returns
an object of type List<FixedDepositDetails>
that represents the list of fixed deposits returned by the FixedDepositWS web
service.

The
following figure shows the role played by MappingJackson2HttpMessageConverter
when FixedDepositWSClient invokes FixedDepositController’s getFixedDepositList method:

Figure 12-4 FixedDepositWSClient’s getFixedDepositList method uses RestTemplate to send a web request to FixedDepositWS web service

The above
figure shows that MappingJackson2HttpMessageConverter
is used to convert the return value of FixedDepositController’s
getFixedDepositList
method into JSON format. Also, MappingJackson2HttpMessageConverter
is used by the RestTemplate to convert the JSON
response received from the FixedDepositController
to a Java object of type List<FixedDepositDetails>.

In
example listing 12-15, RestTemplate’s
exchange method
was used to send an HTTP GET
request to FixedDepositWS web service. The exchange
method is typically used if the HTTP response from the web service needs to be
converted to a Java generic type, and to send HTTP request headers. RestTemplate also defines HTTP
method-specific methods that simplify writing RESTful clients. For instance,
you can use getForEntity
method to send HTTP GET
request, postForEntity
to send HTTP POST request,
delete to send
HTTP DELETE request,
and so on.

The
following example listing shows FixedDepositWSClient’s
openFixedDeposit method
that sends an HTTP POST
request to FixedDepositWS web service to create a new fixed deposit:

Example listing 12-16 – FixedDepositWSClient’s
openFixedDeposit method

Project – ch12-webservice-client

Source
location - src/main/java/sample/spring/chapter12

package
sample.spring.chapter12;

import
org.springframework.http.ResponseEntity;

import
org.springframework.web.client.RestTemplate;

.....

public
class FixedDepositWSClient {

private static void openFixedDeposit(RestTemplate restTemplate) {

FixedDepositDetails fdd = new FixedDepositDetails();

fdd.setDepositAmount("9999");

 ResponseEntity<FixedDepositDetails>
responseEntity = restTemplate

.postForEntity("http://localhost:8080/ch12-webservice/fixedDeposits",

fdd, FixedDepositDetails.class);

FixedDepositDetails fixedDepositDetails = responseEntity.getBody();

 }

}

FixedDepositWSClient’s openFixedDeposit method
sends details of the fixed deposit to be created to the FixedDepositWS web
service. If the fixed deposit is created successfully, FixedDepositWS returns
the newly created FixedDepositDetails
object containing the unique identifier assigned to it. The above example
listing shows that RestTemplate’s
postForEntity method
accepts web service URL, object to be POSTed (which is FixedDepositDetails
object), and the HTTP response type (which is FixedDepositDetails.class).
Sending HTTP POST request to http://localhost:8080/ch12-webservice/fixedDeposits
URL results in invocation of FixedDepositController’s
openFixedDeposit method
(refer example listing 12-9 or FixedDepositController
class of ch12-webservice
project).

FixedDepositController’s openFixedDeposit method
validates details of the fixed deposit before attempting to create the fixed
deposit. FixedDepositDetailsValidator
is responsible for validating the fixed deposit details. If the fixed deposit
amount is less than 1000 or tenure is less than 12 months or if the email id
specified is not well-formed, an exception is thrown by the openFixedDeposit method.
The following example listing shows openFixedDeposit
and handleException
methods of FixedDepositController:

Example listing 12-17 – openFixedDeposit
and handleException
methods of FixedDepositController

Project – ch12-webservice

Source location - src/main/java/sample/spring/chapter12/web

package
sample.spring.chapter12.web;

import
org.springframework.validation.BindingResult;

import
org.springframework.web.bind.annotation.ExceptionHandler;

import
sample.spring.chapter12.exception.ValidationException;

.....

@Controller

@RequestMapping(value
= "/fixedDeposits")

public
class FixedDepositController {

@RequestMapping(method = RequestMethod.POST)

 public
ResponseEntity<FixedDepositDetails> openFixedDeposit(

@RequestBody FixedDepositDetails fixedDepositDetails, BindingResult
bindingResult) {

 new
FixedDepositDetailsValidator().validate(fixedDepositDetails, bindingResult);

if (bindingResult.hasErrors()) {

throw new ValidationException("Validation errors occurred");

 }
else {

fixedDepositService.saveFixedDeposit(fixedDepositDetails);

 }

 @ExceptionHandler(ValidationException.class)

 @ResponseBody

 @ResponseStatus(value
= HttpStatus.BAD_REQUEST)

 public
String handleException(Exception ex) {

 return
ex.getMessage();

 }

 }

}

The above
example listing shows that the openFixedDeposit method throws ValidationException if fixed deposit fails validation. As the handleException method is annotated with @ExceptionHandler(ValidationException.class), the ValidationException thrown by the openFixedDeposit method is handled by the handleException method. @ResponseBody
and @ResponseStatus(value=HttpStatus.BAD_REQUEST) annotations specify that the exception message returned by
the handleException method is written to the response body and the status code is set
to HttpStatus.BAD_REQUEST constant (which corresponds to HTTP status code 400).

FixedDepositWSClient’s openInvalidFixedDeposit method attempts to create a fixed deposit with deposit amount 100, as shown
here:

Example listing 12-18 – FixedDepositWSClient - openInvalidFixedDeposit method

Project – ch12-webservice-client

Source location - src/main/java/sample/spring/chapter12

private static void openInvalidFixedDeposit(RestTemplate restTemplate) {

FixedDepositDetails fdd = new FixedDepositDetails();

 fdd.setDepositAmount("100");

fdd.setEmail("99@somedomain.com");

fdd.setTenure("12");

ResponseEntity<FixedDepositDetails> responseEntity = restTemplate

.postForEntity(
"http://localhost:8080/ch12-webservice/fixedDeposits",

 fdd, FixedDepositDetails.class);

FixedDepositDetails fixedDepositDetails = responseEntity.getBody();

logger.info("Details of the newly created fixed deposit: "

+ fixedDepositDetails);

 }

The openInvalidFixedDeposit method uses RestTemplate to send request to
FixedDepositController’s openFixedDeposit method. As the
fixed deposit amount is specified as 100,
FixedDepositController’s openFixedDeposit method throws ValidationException (refer
example listing 12-17). FixedDepositController’s
handleException method
(refer example listing 12-17) handles the ValidationException and sets the HTTP response status
to 400. As the response status code received by RestTemplate is 400, the handling of response is
delegated to the MyErrorHandler
implementation (refer example listing 12-12 and 12-13) that we configured for
the RestTemplate.

RestTemplate allows clients to synchronously access
RESTful web services. Let’s now look at how to asynchronously access RESTful
web services using Spring’s AsyncRestTemplate.

Asynchronously
accessing RESTful web services using AsyncRestTemplate

To allow clients to
asynchronously access RESTful web services, Spring provides AsyncRestTemplate. The following example listing shows how AsyncRestTemplate is configured in the application context XML file of ch12-webservice-client project:

Example listing 12-19 – applicationContext.xml - AsyncRestTemplate configuration

Project – ch12-webservice-client

Source
location - src/main/resources/META-INF/spring

<beans
.....>

 <bean
id="errorHandler"
class="sample.spring.chapter12.MyErrorHandler" />

<bean id="asyncRestTemplate" class="org.springframework.web.client.AsyncRestTemplate">

<property name="errorHandler" ref="errorHandler" />

</bean>

</beans>

If you
compare the above example listing with the example listing 12-12, you’ll notice
that both AsyncRestTemplate
and RestTemplate classes are
configured in the same way; they use the same MyErrorHandler
instance for handling HTTP errors.

AsyncRestTemplate class
defines methods that are similar to the methods defined by the RestTemplate class.
The following example listing shows the FixedDepositWSAsyncClient
class that uses AsyncRestTemplate to access
FixedDepositWS web service:

Example listing 12-20 – FixedDepositWSAsyncClient - openFixedDeposit method

Project – ch12-webservice-client

Source location - src/main/java/sample/spring/chapter12

package
sample.spring.chapter12;

import
org.springframework.http.HttpEntity;

import
org.springframework.util.concurrent.ListenableFuture;

import
org.springframework.util.concurrent.ListenableFutureCallback;

import
org.springframework.web.client.AsyncRestTemplate;

public class
FixedDepositWSAsyncClient {

 private static
ApplicationContext context;

 public static
void main(String args[]) {

 context = new
ClassPathXmlApplicationContext(

"classpath:META-INF/spring/applicationContext.xml");

openFixedDeposit(context.getBean(AsyncRestTemplate.class));

 }

 private static
void openFixedDeposit(AsyncRestTemplate restTemplate) {

FixedDepositDetails fdd = new FixedDepositDetails();

fdd.setDepositAmount("9999");

 HttpEntity<FixedDepositDetails>
requestEntity = new HttpEntity<FixedDepositDetails>(fdd);

 ListenableFuture<ResponseEntity<FixedDepositDetails>>
futureResponseEntity =

 restTemplate.postForEntity("http://localhost:8080/ch12-webservice/fixedDeposits",

requestEntity, FixedDepositDetails.class);

 futureResponseEntity

 .addCallback(new
ListenableFutureCallback<ResponseEntity<FixedDepositDetails>>() {

@Override

 public
void onSuccess(ResponseEntity<FixedDepositDetails> entity) {

FixedDepositDetails fixedDepositDetails = entity.getBody();

 }

@Override

public void onFailure(Throwable t) { }

 });

 }

}

The above
example listing shows that the openFixedDeposit
method uses AsyncRestTemplate
to send a request to FixedDepositWS web service. AsyncRestTemplate’s
postForEntity method
sends an HTTP POST request
to FixedDepositWS web service that invokes FixedDepositController’s
openFixedDeposit method.
If you compare the AsyncRestTemplate’s
postForEntity method
shown above with that of RestTemplate’s
postForEntity method
(refer example listing 12-16), you’ll notice that the AsyncRestTemplate’s
postForEntity returns
an object of type ListenableFuture
(that extends java.util.concurrent.Future
interface). ListenableFuture’s
addCallback method
is used to register a callback that is triggered when the ListenableFuture task completes.
ListenableFuture’s addCallback method
accepts an argument of type ListenableFutureCallback that defines onSuccess and onFailure methods. The onSuccess method is called when the ListenableFuture task completes
successfully, and the onFailure method is called when the ListenableFuture task fails to
complete.

You should
note that by default AsyncRestTemplate uses a SimpleAsyncTaskExecutor to asynchronously execute each request in a new thread. You can pass a ThreadPoolTaskExecutor to AsyncRestTemplate’s constructor to asynchronously execute
tasks using a thread from a thread
pool. Refer to section 8-6 of chapter 8 to learn
more about SimpleAsyncTaskExecutor and ThreadPoolTaskExecutor.

Let’s now
look at the purpose served by HttpMessageConverters
in Spring Web MVC.

12-5 Converting Java objects to HTTP
requests and responses and vice versa using HttpMessageConverter

HttpMessageConverters are
used by Spring in the following scenarios to perform conversion:

§ if a method argument is annotated with @RequestBody annotation, Spring
converts HTTP request body to the Java type of the method argument

§ if
a method is annotated with @ResponseBody
annotation, Spring converts the returned Java object from the method to HTTP
response body

§ if
the return type of a method is HttpEntity
or ResponseEntity, Spring
converts the object returned by the method to the HTTP response body

§ objects passed to and returned from the methods of RestTemplate
and AsyncRestTemplate
classes like getForEntity,
postForEntity, exchange, and so on, are
converted to HTTP requests and from HTTP responses by Spring

The
following table describes some of the HttpMessageConverter
implementations that are provided out-of-the-box by Spring Web MVC:

 	
 HttpMessageConverter implementation

 	
 Description

 	
 StringHttpMessageConverter

 	
 converts to/from strings

 	
 FormHttpMessageConverter

 	
 converts form data to/from MultiValueMap<String, String>
 type. This HttpMessageConverter is used by
 Spring when dealing with form data and file uploads.

 	
 MappingJackson2HttpMessageConverter

 	
 converts to/from JSON

 	
 MarshallingHttpMessageConverter

 	
 converts to/from XML

HttpMessageConverters
mentioned in the above table are automatically registered with the Spring
container by the <annotation-driven>
element of Spring’s mvc
schema. To view the complete list of HttpMessageConverters
that are registered by default by <annotation-driven>
element, refer to the Spring Framework reference documentation.

Let’s now
look at @PathVariable
and @MatrixVariable
annotations that further simplify developing RESTful web services using Spring
Web MVC.

12-6 @PathVariable and @MatrixVariable annotations

Instead of
specifying the actual URI, a
@RequestMapping annotation may specify a URI template to
access specific parts of the request URI. A URI template
contains variable names (specified
within braces) whose values are
derived from the actual request URI. For example, the URI template http://www.somebank.com/fd/{fixeddeposit}
contains the variable name fixeddeposit. If
the request actual request URI is http://www.somebank.com/fd/123,
the value of {fixeddeposit} URI template variable becomes 123.

@PathVariable is a method
argument level annotation that is used by @RequestMapping
methods to assign value of a URI template variable
to the method argument.

IMPORT chapter
12/ch12-webservice-uritemplates and chapter
12/ch12-webservice-client-uritemplates (ch12-webservice-uritemplates
project is a variant of ch12-webservice project that shows the implementation of FixedDepositWS RESTful web
service using @PathVariable annotation. ch12-webservice-client-uritemplates is a variant of ch12-webservice-client that accesses the FixedDepositWS web service represented by ch12-webservice-uritemplates project.)

The
following example listing shows usage of @PathVariable
annotation in FixedDepositController
of ch12-webservice-uritemplates
project:

Example listing 12-21 – FixedDepositController - @PathVariable usage

Project – ch12-webservice-uritemplates

Source location - src/main/java/sample/spring/chapter12/web

package
sample.spring.chapter12.web;

import
org.springframework.web.bind.annotation.PathVariable;

.....

@Controller

public
class FixedDepositController {

@RequestMapping(value="/fixedDeposits/{fixedDepositId}",
method = RequestMethod.GET)

public ResponseEntity<FixedDepositDetails> getFixedDeposit(

@PathVariable("fixedDepositId") int id) {

return new ResponseEntity<FixedDepositDetails>(

fixedDepositService.getFixedDeposit(id), HttpStatus.OK);

 }

}

Instead
of specifying the actual URI, @RequestMapping
annotation in the above example listing specifies /fixedDeposits/{fixedDepositId}
URI template. Now, if the incoming request URI is /fixedDeposits/1,
the value of fixedDepositId
URI template variable is set to 1.
As the @PathVariable
annotation specifies fixedDepositId
as the name of the URI template variable, value 1
is assigned to the id
argument of the getFixedDeposit
method.

If a URI
template defines multiple variables, the @RequestMapping
method can define multiple @PathVariable
annotated arguments, as shown in the following example listing:

Example listing 12-22 – Multiple
URI template variables

@Controller

public
class SomeController {

@RequestMapping(value="/users/{userId}/bankstatements/{statementId}",
.....)

public void getBankStatementForUser(

@PathVariable("userId") String user,

@PathVariable("statementId") String statement) {

 }

}

In the
above example listing, the URI template defines userId
and statementId
variables. If the incoming request URI is /users/me/bankstatements/123,
value me is
assigned to the user
argument and value 123
is assigned to the statement
argument.

If you
want to assign all the URI template variables and their values to a method
argument, you can use @PathVariable
annotation on a Map<String, String>
argument type, as shown in the following example listing:

Example listing 12-23 – Accessing
all URI template variables and their values

@Controller

public
class SomeController {

@RequestMapping(value="/users/{userId}/bankstatements/{statementId}",
.....)

public void getBankStatementForUser(

@PathVariable Map<String, String> allVariables) {

 }

}

In the
above example listing, URI template variables (userId
and statementId) and
their values (me and 123) are assigned to
the allVariables method
argument.

You
should note that URI template can also be specified by class level @RequestMapping
annotation, as shown here:

Example listing 12-24 – URI
template specified at both class and method level @RequestMapping annotations

@Controller

@RequestMapping(value="/service/{serviceId}",
.....)

public
class SomeController {

@RequestMapping(value="/users/{userId}/bankstatements/{statementId}",
.....)

public void getBankStatementForUser(@PathVariable Map<String, String> allVariables)
{

 }

}

In the
above example listing, URI template /service/{serviceId}
is specified by the class level @RequestMapping
annotation, and
/users/{userId}/bankstatements/{statementId} is
specified by the method level @RequestMapping annotation. If the request URI is /service/bankingService/users/me/bankstatements/123, the allVariables argument contains details of serviceId, userId and statementId
URI template variables.

The
scenarios in which you may want to have fine-grained control over what to
extract from the request URI, you can use regular expressions in URI templates.
The following example listing shows usage of regular expressions to extract 123.json value
from /statements/123.json request URI:

Example listing 12-25 – URI
templates – regular expressions usage

@Controller

public
class SomeController {

@RequestMapping(value="/bankestatement/{statementId:[\\d\\d\\d]}.{responseType:[a-z]}",
..)

public void getBankStatementForUser(@PathVariable ("statementId") String
statement,

@PathVariable("responseType") String responseTypeExtension) {

 }

}

Regular
expressions in URI templates are specified in the following format: {variable-name:regular-expression}. If the request URI is /statements/123.json, statementId
variable is assigned the value 123 and responseType is assigned the value json.

NOTE You can
also use Ant-style patterns in URI templates. For instance, you can specify patterns, like /myUrl/*/{myId} and /myUrl/**/{myId} as URI templates.

So far in
this section we have seen examples of how to use @PathVariable to selectively extract
information from the request URI path. Let’s now look at @MatrixVariable annotation that is used to extract name-value pairs from path segments.

Matrix
variables appear as name-value pairs in the request URI, and you can assign
value of these variables to method arguments. For instance, in the request URI /bankstatement/123;responseType=json, the responseType variable represents a matrix variable whose value is json.

NOTE You should
note that by default Spring removes matrix variables from
the URL. To ensure that matrix variables are not removed, set the enable-matrix-variables attribute of <annotation-driven> element of
Spring mvc schema to true. When using matrix variables, the path segments that
contain matrix variables must be represented by URI template variables.

The
following example listing shows usage of @MatrixVariable annotation:

Example listing 12-26 – @MatrixVariable annotation

@Controller

public
class SomeController {

@RequestMapping(value="/bankestatement/{statementId}",
..)

public void getBankStatementForUser(@PathVariable("statementId") String
statement,

@MatrixVariable("responseType") String responseTypeExtension) {

 }

}

In the
above example listing, if the request URI is /bankstatement/123;responseType=json,
the value json is assigned to responseTypeExtension argument. The above example listing also shows a scenario in which both
@PathVariable and @MatrixVariable annotations are used to retrieve information from the request URI.

As matrix
variables can appear in any path segment of the request URI, you should specify
the path segment from which the matrix variable should be retrieved. The
following example listing shows a scenario in which two matrix variables with
the same name are present in different path segments:

Example listing 12-27 – @MatrixVariable annotation – multiple matrix variables with the same name

@Controller

public
class SomeController {

@RequestMapping(value="/bankestatement/{statementId}/user/{userId}",
..)

public void getBankStatementForUser(

 @MatrixVariable(value
= "id", pathVar = "statementId") int someId,

 @MatrixVariable(value
= "id", pathVar = "userId") int someOtherId) {

 }

}

The pathVar
attribute of @MatrixVariable annotation specifies the name of the URI template variable that
contains the matrix variable. So, if the request URI is /bankstatement/123;id=555/user/me;id=777, the value 555 is assigned to someId, and the value 777 is assigned to someOtherId argument.

As in case
of @PathVariable annotation, you can annotate a method argument type of Map<String, String> with @MatrixVariable to assign all the matrix variables to the method argument. Unlike @PathVariable
annotation, @MatrixVariable annotation allows you to specify a default value for the matrix
variable using defaultValue attribute. Also, you can set required attribute of @MatrixVariable annotation to false to indicate that the matrix variable is optional.
By default, the value of required attribute is set to true. If the required attribute is set to true, and the matrix variable is not found in the request, then an
exception is thrown.

12-7 Summary

In this
chapter, we looked at how to develop RESTful web services and access them. We
looked at how to use URI templates along with @PathVariable and @MatrixVariable annotations to access information from the request URI. We also
looked at how to access RESTful web services synchronously using RestTemplate
and asynchronously using AsyncRestTemplate.

Chapter 13 – More Spring Web MVC –
internationalization, file upload and asynchronous request processing

13-1 Introduction

In earlier
chapters, we saw that Spring Web MVC simplifies creating web applications and
RESTful web services. In this chapter, we’ll look at some more features offered
by Spring Web MVC framework that you may require in your web applications.
We’ll particularly look at:

§ pre-
and post-processing requests using handler interceptors

§ internationalizing
Spring Web MVC applications

§ asynchronously processing requests

§ performing
type conversion and formatting, and

§ uploading
files

IMPORT chapter
13/ch13-bankapp (This project is a variant of ch10-bankapp project that
demonstrates how to incorporate internationalization in MyBank web application,
and how to use handler interceptors.)

Let’s
begin by looking at how to pre- and post-process requests using handler
interceptors.

13-2 Pre- and post-processing requests
using handler interceptors

Handler
interceptors allow you to pre- and post-process requests. The concept of
handler interceptors is similar to that of servlet filters. Handler
interceptors implement Spring’s HandlerInterceptor interface. A handler interceptor contains the pre- and
post-processing logic that is required by multiple controllers. For instance,
you can use handler interceptors for logging, security checks, changing locale,
and so on.

Let’s now
look at how to implement and configure handler interceptors.

Implementing and configuring a handler interceptor

You can
create handler interceptors by implementing HandlerInterceptor interface. HandlerInterceptor interface defines the following methods:

§ preHandle –
this method is executed before the controller processes the request. If the preHandle
method returns true, the controller is invoked by Spring to process the request. If the
preHandle method returns false, the controller is not invoked.

§ postHandle –
this method is executed after the controller processes the request, but before the view is rendered by the DispatcherServlet.

§ afterCompletion – this method is invoked after the
completion of request processing (that is, after the view is rendered by the DispatcherServlet) to do any cleanup, if required.

The
following example listing shows MyRequestHandlerInterceptor class of ch13-bankapp that implements HandlerInterceptor interface:

Example listing 13-1 – MyRequestHandlerInterceptor

Project – ch13-bankapp

Source location - src/main/java/sample/spring/chapter13/web

package
sample.spring.chapter13.web;

import
org.springframework.web.servlet.HandlerInterceptor;

.....

public
class MyRequestHandlerInterceptor implements HandlerInterceptor {

.....

 public
boolean preHandle(HttpServletRequest request, HttpServletResponse response,

Object handler) throws Exception {

logger.info("HTTP method --> " + request.getMethod());

Enumeration<String> requestNames = request.getParameterNames();

.....

return true;

}

public void postHandle(HttpServletRequest request, HttpServletResponse
response,

Object handler, ModelAndView modelAndView) throws Exception {

logger.info("Status code --> " + response.getStatus());

}

 public
void afterCompletion(HttpServletRequest request, HttpServletResponse response,

Object handler, Exception ex) throws Exception {

logger.info("Request processing complete");

 }

}

In the
above example listing, the
preHandle method inspects each incoming request
and logs the HTTP method associated with the request and the request parameters
contained in the request. The preHandle method returns true, which means that the request will be processed by the controller.
The postHandle method logs the HTTP response status code. The afterCompletion method logs the message that the request was successfully processed.

NOTE Instead of
directly implementing the HandlerInterceptor
interface, you can extend the abstract HandlerInterceptorAdapter class that provides empty implementations for postHandle and afterCompletion
methods, and the preHandle method is
defined to simply return true.

The
following example listing shows how handler interceptors are configured in the
web application context XML file:

Example listing 13-2 – MyRequestHandlerInterceptor

Project – ch13-bankapp

Source location - src/main/webapp/WEB-INF/spring/bankapp-config.xml

<beans
.....xmlns:mvc="http://www.springframework.org/schema/mvc".....>

<mvc:annotation-driven />

 <mvc:interceptors>

<bean class="sample.spring.chapter13.web.MyRequestHandlerInterceptor"
/>

 </mvc:interceptors>

</beans>

The above
example listing shows that the <interceptors> element of Spring’s mvc schema is used for configuring handler interceptors. The <interceptors> element can have the following sub-elements:

§ <bean> element
of Spring’s beans schema - specifies a Spring bean that implements the HandlerInterceptor interface. A handler interceptor defined using <bean>
element applies to all requests.

§ <ref> element
of Spring’s beans schema - refers to a Spring bean that implements the HandlerInterceptor interface. A handler interceptor defined using <ref>
element applies to all requests.

§ <interceptor> element of Spring’s mvc schema – specifies a Spring bean that implements the HandlerInterceptor interface, and the request URIs to which the HandlerInterceptor applies.

The
following example listing shows a scenario in which MyRequestHandlerInterceptor is mapped to /audit/** request URI:

Example listing 13-3 – <mvc:interceptor> usage

<beans
.....xmlns:mvc="http://www.springframework.org/schema/mvc".....>

<mvc:annotation-driven />

<mvc:interceptors>

<mvc:interceptor>

<mvc:mapping path="/audit/**"/>

<bean class="sample.spring.chapter13.web.MyRequestHandlerInterceptor"
/>

</mvc:interceptor>

</mvc:interceptors>

</beans>

In the
above example listing, <interceptor> element of Spring’s mvc schema is used for mapping MyRequestHandlerInterceptor to /audit/** URI
pattern. The <mapping> element of Spring’s mvc schema specifies the request URI pattern to which the handler
interceptor specified by the <bean> element applies.

Let’s now
look at how to internationalize a Spring Web MVC application.

13-3 Internationalizing using resource bundles

Before
delving into the details of how to internationalize Spring Web MVC
applications, let’s look at the internationalization and localization
requirements of the MyBank web application.

MyBank web application’s requirements

It is required
that the MyBank web application supports English (en_US locale) and German (de_DE locale) languages.
The following figure shows one of the web pages of MyBank web application in de_DE locale:

Figure 13-1
Web page that shows the list of fixed deposits in de_DE
locale. A user can select a locale from the given options.

The above
figure shows that a user can choose one of the following languages: English(US), German, or English(Canada). If a user chooses German language option, the web pages are displayed in de_DE locale.
If a user chooses English(US) language option, the web pages are displayed in en_US locale.
If a user chooses English(Canada) language option, the web pages are displayed
in en_CA locale.

Let’s now
look at how to address internationalization and localization requirements of
MyBank web application.

Internationalizing and localizing MyBank
web application

In Spring
Web MVC, the DispatcherServlet uses a LocaleResolver for automatically resolving messages based on the user’s locale. To
support internationalization, you need to configure the following beans in your
web application context XML file:

·
LocaleResolver – resolves the current locale of the user

·
MessageSource – resolves messages from resource bundles based on the current
locale of the user

·
LocaleChangeInterceptor – allows changing current locale on every request based on a
configurable request parameter

The
following example listing shows configuration of LocaleResolver, LocaleChangeInterceptor and MessageSource beans in the web application context XML file of ch13-bankapp
project:

Example listing 13-4 – bankapp-config.xml

Project – ch13-bankapp

Source location - src/main/webapp/WEB-INF/spring

<beans
.....>

 <bean
class="org.springframework.web.servlet.i18n.CookieLocaleResolver"
id="localeResolver">

 <property
name="cookieName" value="mylocale" />

</bean>

 <bean

class="org.springframework.context.support.ReloadableResourceBundleMessageSource"

 id="messageSource">

 <property
name="basenames" value="WEB-INF/i18n/messages" />

</bean>

<mvc:interceptors>

 <bean
class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">

 <property
name="paramName" value="lang" />

</bean>

</mvc:interceptors>

</beans>

In the
above example listing, CookieLocaleResolver (an implementation of LocaleResolver interface) has been
configured for locale resolution. If the locale information is stored in a
cookie by the web application, CookieLocaleResolver is used for locale resolution. CookieLocaleResolver’s cookieName
property specifies the name of the cookie that contains the locale information.
If the cookie is not found in the request, CookieLocaleResolver determines the
locale either by looking at the default locale (configured using defaultLocale
property of CookieLocaleResolver) or by inspecting the Accept-Language request header.
Spring additionally provides the following built-in LocaleResolver
implementations that you can use: AcceptHeaderLocaleResolver (returns the locale specified by the Accept-Language request header), SessionLocaleResolver (returns the locale information stored in the HttpSession of
the user) and FixedLocaleResolver (always returns a fixed default locale).

In
addition to knowing user’s locale, you may also want to know user’s time zone
to convert date and time in user’s time zone. LocaleContextResolver (introduced in Spring 4.0) not only provides the locale information
but also the time zone information of the user. CookieLocaleResolver, SessionLocaleResolver and FixedLocaleResolver implement the LocaleContextResolver interface; therefore, if you are using any of these resolvers you
can obtain user’s time zone in your controllers using getTimeZone
method of LocaleContextHolder (or RequestContextUtils) class. If you only want to obtain the locale information in your
controllers, you can use getLocale method of LocaleContextHolder (or RequestContextUtils) class.

Spring
provides a LocaleChangeInterceptor (a HandlerInterceptor) that uses a configurable request parameter (specified by paramName
property) to change the current locale on every request. In example listing
13-4, the paramName property is set to lang. LocaleResolver defines a setLocale method that is used by the LocaleChangeInterceptor to change the
current locale. If you don’t want to use LocaleChangeInterceptor, then you can
change the user’s locale in your controller by calling setLocale
method of LocaleContextHolder (or RequestContextUtils) class.

Once the
user’s locale is resolved, Spring uses the configured MessageSource
implementation to resolve messages. Spring provides the following built-in
implementations of MessageSource interface:

§ ResourceBundleMessageSource – a MessageSource implementation that accesses resource bundles using the specified basenames

§ ReloadableResourceBundleMessageSource – similar to ResourceBundleMessageSource implementation. This implementation supports reloading of resource bundles.

Example
listing 13-4 shows that the MyBank web application uses ReloadableResourceBundleMessageSource. The basenames property is set to WEB-INF/i18n/messages, which means that the ReloadableResourceBundleMessageSource
looks for resource bundles named messages inside WEB-INF/i18n
folder. So, if the user’s locale is resolved to en_US, the ReloadableResourceBundleMessageSource will resolve messages from the messages_en_US.properties file.

If you
look at /src/main/webapp/WEB-INF/i18n folder of ch13-bankapp project, you’ll find the following properties files: messages.properties, messages_en_US.properties and messages_de_DE.properties. The messages_de_DE.properties file contains messages and labels for de_DE locale, messages_en_US.properties contains messages and labels for en_US locale, and messages.properties contains messages and labels that are shown when no locale-specific resource bundles are found. As there is no messages_en_CA.properties file corresponding to en_CA locale, selecting the English(Canada) option (refer figure 13-1) shows messages from the messages.properties file.

In figure
13-1, we saw that we can change the language of the MyBank web application by
selecting English(US), English(Canada) and German language options. We saw earlier that the LocaleChangeInterceptor can change the locale of the MyBank web application if the locale
information is contained in a request parameter named lang. To
simplify changing the locale, lang request parameter is appended to the hyperlinks shown by English(US), English(Canada) and German language options, as shown here:

Example listing 13-5 – fixedDepositList.jsp

Project – ch13-bankapp

Source location - src/main/webapp/WEB-INF/jsp

 Language:

English(US)
|

German
|

 English(Canada)

Let’s now
look at how you can asynchronously process requests in Spring Web MVC
applications.

13-4 Asynchronously processing requests

A @RequestMapping annotated method that returns a java.util.concurrent.Callable or
Spring’s DeferredResult object processes web requests asynchronously. If a @RequestMapping method returns Callable, Spring Web MVC takes care of processing the Callable in an application thread (and not the
Servlet container thread) to produce the result. If a @RequestMapping method returns DeferredResult, it is application’s responsibility to process the DeferredResult
in an application thread (and not the Servlet container
thread) to produce the result. Before delving into the detail of how Callable and DeferredResult
return values are processed, let’s look at how to configure a Spring Web MVC
application to support asynchronous request processing.

IMPORT chapter
13/ch13-async-bankapp (This project is a variant of ch10-bankapp project that
asynchronously processes requests. @RequestMapping methods defined in
the FixedDepositController of this project return Callable. You
should deploy and run the ch13-async-bankapp project to see asynchronous request processing in action.)

Asynchronous request processing
configuration

As
asynchronous request processing in Spring Web MVC is based on Servlet 3, web.xml must
refer to Servlet 3 XML schema. Also, <async-supported> element must be added to the DispatcherServlet definition in web.xml file
to indicate that it supports asynchronous request processing. The following
example listing shows the web.xml file of ch13-async-bankapp project:

Example listing 13-6 – web.xml – asynchronous
request processing configuration

Project – ch13-async-bankapp

Source location - src/main/webapp/WEB-INF

<web-app
.....

xsi:schemaLocation="java.sun.com/xml/ns/javaee java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

 version="3.0">

<servlet>

<servlet-name>bankapp</servlet-name>

<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

 <async-supported>true</async-supported>

</servlet>

</web-app>

The above
example listing shows that the bankapp servlet is configured to support asynchronous request processing.
Now, the bankapp servlet can asynchronously process web requests.

Returning Callable from @RequestMapping methods

The
following example listing shows the FixedDepositController whose @RequestMapping methods return Callable:

Example listing 13-7 – FixedDepositController – returning Callable from @RequestMapping methods

Project – ch13-async-bankapp

Source location - src/main/java/sample/spring/chapter13/web

package
sample.spring.chapter13.web;

import
java.util.concurrent.Callable;

.....

public
class FixedDepositController {

.....

@RequestMapping(value = "/list", method = RequestMethod.GET)

 public
Callable<ModelAndView> listFixedDeposits() {

return new Callable<ModelAndView>() {

@Override

public ModelAndView call() throws Exception {

Thread.sleep(5000);

Map<String, List<FixedDepositDetails>> modelData =

new HashMap<String, List<FixedDepositDetails>>();

modelData.put("fdList", fixedDepositService.getFixedDeposits());

return new ModelAndView("fixedDepositList", modelData);

}

};

}

.....

}

The above
example listing shows that the listFixedDeposits method returns a Callable<T> object, where T is the type of the result that is asynchronously computed. The Callable’s call method
contains the logic that needs to be executed asynchronously to produce the
result. The call method shown in the above example listing invokes FixedDepositService’s getFixedDeposits method, and returns a ModelAndView object containing the
model and view information. The Thread.sleep method is invoked in the beginning of call method to
simulate a scenario in which the request processing takes time.

If an
exception is thrown during the execution of the Callable returned from the
controller, the @ExceptionHandler method (or the configured HandlerExceptionResolver bean) of the
controller is responsible for handling the exception. For more information on @ExceptionHandler annotation, refer to section 10-9 of chapter 10.

Example
listing 13-7 shows that if you want to switch from synchronous request
processing approach to asynchronous request processing, you need to move the
logic from the @RequestMapping method to the call method of Callable, and change the return type of the @RequestMapping method to Callable<T>.

Let’s now
look at how requests are asynchronously processed when a @RequestMapping method returns a DeferredResult object.

IMPORT chapter
13/ch13-async-webservice and ch13-async-webservice-client (The ch13-async-webservice project is a variant of FixedDepositWS web service (refer ch12-webservice project of chapter 12) that asynchronously processes web service
requests. @RequestMapping methods defined in the FixedDepositController of this
project return an instance of DeferredResult object. The ch13-async-webservice-client project is same as the FixedDepositWS web service client (refer ch12-webservice-client project of chapter 12) that assumes that the web service is
deployed at http://localhost:8080/ch13-async-webservice.)

Returning DeferredResult from @RequestMapping methods

A DeferredResult instance represents a result that is asynchronously computed. You
set the result on the DeferredResult instance by calling its setResult method. Typically, a @RequestMapping method stores a DeferredResult instance in a Queue or a Map or any other data structure, and a separate thread is responsible
for computing the result and setting the result on the DeferredResult
instance.

Let’s
first look at @RequestMapping methods that return DeferredResult type.

@RequestMapping method
implementation

The
following example listing shows the FixedDepositController whose @RequestMapping methods return DeferredResult objects:

Example listing 13-8 – FixedDepositController – returning DeferredResult from @RequestMapping methods

Project – ch13-async-webservice

Source location - src/main/java/sample/spring/chapter13/web

package
sample.spring.chapter13.web;

import
java.util.Queue;

import
java.util.concurrent.ConcurrentLinkedQueue;

import
org.springframework.web.context.request.async.DeferredResult;

.....

@Controller

@RequestMapping(value
= "/fixedDeposits")

public
class FixedDepositController {

 private
static final String LIST_METHOD = "getFixedDepositList";

private static final String GET_FD_METHOD = "getFixedDeposit";

.....

 private
final Queue<ResultContext> deferredResultQueue =

new ConcurrentLinkedQueue<ResultContext>();

.....

@RequestMapping(method = RequestMethod.GET)

public DeferredResult<ResponseEntity<List<FixedDepositDetails>>>
getFixedDepositList() {

DeferredResult<ResponseEntity<List<FixedDepositDetails>>>
dr =

new
DeferredResult<ResponseEntity<List<FixedDepositDetails>>>();

ResultContext<ResponseEntity<List<FixedDepositDetails>>>
resultContext =

new
ResultContext<ResponseEntity<List<FixedDepositDetails>>>();

resultContext.setDeferredResult(dr);

resultContext.setMethodToInvoke(LIST_METHOD);

resultContext.setArgs(new HashMap<String, Object>());

deferredResultQueue.add(resultContext);

return dr;

}

.....

}

Each @RequestMapping method of FixedDepositController performs these steps:

Step 1 - creates an instance of DeferredResult<T> object, where T represents the type of the result that is asynchronously computed. As the type of the
result computed for the getFixedDepositList method is ResponseEntity<List<FixedDepositDetails>>, an instance of DeferredResult<ResponseEntity<List<FixedDepositDetails>>> is created.

Step 2 - creates an instance of ResultContext
object. ResultContext object holds DeferredResult instance that we created in Step 1, and other details that are
required to asynchronously compute the result for the DeferredResult
object. In case of FixedDepositController’s getFixedDepositList method, result is represented by the list of fixed deposits obtained
by invoking FixedDepositService’s getFixedDeposits method.

The
following example listing shows the ResultContext class:

Example listing 13-9 – ResultContext
class for storing DeferredResult and other information

Project – ch13-async-webservice

Source location - src/main/java/sample/spring/chapter13/web

package
sample.spring.chapter13.web;

import
java.util.Map;

import
org.springframework.web.context.request.async.DeferredResult;

public
class ResultContext<T> {

private String methodToInvoke;

private DeferredResult<T> deferredResult;

private Map<String, Object> args;

public void setDeferredResult(DeferredResult<T> deferredResult) {

this. deferredResult = deferredResult;

}

}

The deferredResult
property refers to an instance of DeferredResult, the methodToInvoke
property specifies the name of the FixedDepositService method that is
invoked to compute the result for the DeferredResult object, and args property
(of type java.util.Map) specifies the arguments to be passed to the FixedDepositService method. A separate thread (as explained later in this section) uses
the methodToInvoke and args properties to invoke the specified FixedDepositService method, and sets
the returned result on the DeferredResult instance.

As the LIST_METHOD, GET_FD_METHOD, and so on, constants in the FixedDepositController class refer to the names of the FixedDepositService methods (refer example listing 13-8), the methodToInvoke property is set to the one of these constants. In example listing 13-8,
FixedDepositController’s getFixedDepositList method sets the methodToInvoke property to LIST_METHOD constant (whose value is getFixedDeposits) because FixedDepositService’s getFixedDeposits method needs to be invoked to obtain the result for the DeferredResult
object returned by FixedDepositController’s getFixedDepositList method.

Step 3 - stores the ResultContext
instance created in Step 2 into a Queue (refer to deferredResultQueue instance variable in example listing 13-8)

Step 4 - returns the DeferredResult
object created in Step 1

The above sequence
of steps suggests that for each web request an instance of ResultContext
is stored in the deferredResultQueue. The following
figure summarizes the actions that are performed by FixedDepositController’s getFixedDepositList method.

Figure 13-2 FixedDepositController’s getFixedDepositList method adds a ResultContext object to the queue and returns a DeferredResult object

Let’s now look at how the
result is computed for the DeferredResult
instance contained inside the ResultContext
object.

Computing result
for a DeferredResult instance

FixedDepositController’s processResults method is responsible
for iterating over the ResultContext objects stored in the deferredResultQueue (refer example
listing 13-8), computing the result for each DeferredResult object, and setting
the result on the DeferredResult object. The following example listing shows the processResults
method:

Example listing 13-10 – processResults
method – computing and setting results on DeferredResult objects

Project – ch13-async-webservice

Source location - src/main/java/sample/spring/chapter13/web

package
sample.spring.chapter13.web;

import
org.springframework.scheduling.annotation.Scheduled;

import
org.springframework.web.context.request.async.DeferredResult;

@Controller

@RequestMapping(value
= "/fixedDeposits")

public
class FixedDepositController {

 private
static final String LIST_METHOD = "getFixedDepositList";

.....

private final Queue<ResultContext> deferredResultQueue =

new ConcurrentLinkedQueue<ResultContext>();

 @Autowired

 private
FixedDepositService fixedDepositService;

 @Scheduled(fixedRate
= 10000)

public void processResults() {

for (ResultContext resultContext : deferredResultQueue) {

if (resultContext.getMethodToInvoke() == LIST_METHOD) {

resultContext.getDeferredResult().setResult(

new ResponseEntity<List<FixedDepositDetails>>(

fixedDepositService.getFixedDeposits(), HttpStatus.OK));

}

.....

 deferredResultQueue.remove(resultContext);

}

}

}

@Scheduled annotation (refer section
8-6 of chapter 8 for more details) on processResults method specifies that
every 10 seconds an application thread is responsible for executing the processResults
method. The processResults method uses the method name and argument information stored in the ResultContext
instance to invoke the appropriate FixedDepositService’s method. The processResults
method then sets the result on the DeferredResult instance by calling
its setResult method. In the end, the processResults method removes the ResultContext
instance from the Queue. After processing a ResultContext instance, the processResults method removes the ResultContext instance from the Queue so that it is not re-processed by the processResults
method when it executes again after 10 seconds.

Figure
13-3 summarizes the actions performed by FixedDepositController’s processResults
method to compute the result and set it on the DeferredResult instance.

Figure 13-3 The processResults
method reads method name and argument information from the ResultContext
object to compute the result for the DeferredResult instance

Let’s now
look at how exceptions are handled when a @RequestMapping method returns a DeferredResult
instance.

Exception Handling

If you set
an object of type java.lang.Exception using DeferredResult’s setErrorResult method, the result is handled by @ExceptionHandler annotated method of
the controller (or by the configured HandlerExceptionResolver bean). For
more information on @ExceptionHandler annotation, refer to section 10-9 of chapter 10.

The
following example listing shows FixedDepositController’s openFixedDeposit method that opens a new fixed deposit:

Example listing 13-11 – FixedDepositController’s openFixedDeposit method

Project – ch13-async-webservice

Source location - src/main/java/sample/spring/chapter13/web

package
sample.spring.chapter13.web;

@Controller

@RequestMapping(value
= "/fixedDeposits")

public
class FixedDepositController {

private static final String OPEN_FD_METHOD =
"openFixedDeposit";

.....

private final Queue<ResultContext> deferredResultQueue =

new ConcurrentLinkedQueue<ResultContext>();

@RequestMapping(method = RequestMethod.POST)

public DeferredResult<ResponseEntity<FixedDepositDetails>>
openFixedDeposit(

@RequestBody FixedDepositDetails fixedDepositDetails, BindingResult bindingResult)
{

DeferredResult<ResponseEntity<FixedDepositDetails>> dr =

new DeferredResult<ResponseEntity<FixedDepositDetails>>();

ResultContext<ResponseEntity<FixedDepositDetails>> resultContext =

new ResultContext<ResponseEntity<FixedDepositDetails>>();

resultContext.setDeferredResult(dr);

resultContext.setMethodToInvoke(OPEN_FD_METHOD);

Map<String, Object> args = new HashMap<String, Object>();

args.put("fixedDepositDetails", fixedDepositDetails);

args.put("bindingResult", bindingResult);

resultContext.setArgs(args);

deferredResultQueue.add(resultContext);

return dr;

}

.....

}

The above
example listing shows that the arguments (fixedDepositDetails and bindingResult)
passed to the openFixedDeposit method are set on the ResultContext instance so that these
arguments are available when the processResults method executes the
logic for opening a new fixed deposit. The fixedDepositDetails argument contains
the details of the fixed deposit to be opened and the bindingResult
argument contains the results of data binding.

The
following example listing shows how the processResults method executes the
logic for opening a new fixed deposit:

Example listing 13-12 – FixedDepositController’s processResults method

Project – ch13-async-webservice

Source location - src/main/java/sample/spring/chapter13/web

package
sample.spring.chapter13.web;

@Controller

@RequestMapping(value
= "/fixedDeposits")

public
class FixedDepositController {

private static final String OPEN_FD_METHOD = "openFixedDeposit";

.....

private final Queue<ResultContext> deferredResultQueue =

new ConcurrentLinkedQueue<ResultContext>();

@Autowired

private FixedDepositService fixedDepositService;

.....

 @ExceptionHandler(ValidationException.class)

@ResponseBody

 @ResponseStatus(value
= HttpStatus.BAD_REQUEST)

 public
String handleException(Exception ex) {

logger.info("handling ValidationException " + ex.getMessage());

return ex.getMessage();

}

@Scheduled(fixedRate = 10000)

public void processResults() {

for (ResultContext resultContext : deferredResultQueue) {

if (resultContext.getMethodToInvoke() == OPEN_FD_METHOD) {

FixedDepositDetails fixedDepositDetails = (FixedDepositDetails)
resultContext

.getArgs().get("fixedDepositDetails");

BindingResult bindingResult = (BindingResult) resultContext.getArgs().get("bindingResult");

new FixedDepositDetailsValidator().validate(fixedDepositDetails,
bindingResult);

if (bindingResult.hasErrors()) {

logger.info("openFixedDeposit() method: Validation errors occurred");

resultContext.getDeferredResult().setErrorResult(new ValidationException(

"Validation errors occurred"));

} else {

fixedDepositService.saveFixedDeposit(fixedDepositDetails);

resultContext.getDeferredResult().setResult(new
ResponseEntity<FixedDepositDetails>(

fixedDepositDetails, HttpStatus.CREATED));

}

}

.....

}

}

}

The above example listing
shows the @ExceptionHandler
annotated handleException
method that handles exceptions of type ValidationException.
The handleException
method logs that a validation exception has occurred and returns the exception
message.

To open a new fixed
deposit, the processResults
method retrieves the fixedDepositDetails
(of type FixedDepositDetails)
and bindingResult (of
type BindingResult)
arguments from the ResultContext
and validates the fixedDepositDetails
object by calling FixedDepositValidator’s
validate method. If
validation errors are reported, the processResults
method invokes DeferredResult’s
setErrorResult method to
set ValidationException
(of type java.lang.Exception)
as the result. Setting the ValidationException using DeferredResult’s
setErrorResult method will cause handling of the result by FixedDepositController’s handleException method.

It is
recommended that you deploy the ch13-async-webservice project (which represents the FixedDepositWS RESTful web service)
and access it by running the main method of FixedDepositWSClient of ch13-async-webservice-client project (which represents a client of FixedDepositWS RESTful web
service). The FixedDepositWSClient’s openInvalidFixedDeposit method invokes FixedDepositController’s openFixedDeposit web service method such that it results in ValidationException. You can check the logs to verify that the FixedDepositController’s handleException method handles the result when processResults method sets ValidationException on the DeferredResult object by calling DeferredResult’s setErrorResult method.

Let’s now
look at how to set default timeout value for asynchronous requests.

Setting default timeout value

You can
set the default timeout value of asynchronous requests by using default-timeout attribute of <async-support> element, as shown here:

Example listing 13-13 – Setting default
timeout for asynchronous requests

Project – ch13-async-webservice

Source location – src/main/webapp/WEB-INF/spring/webservice-config.xml

<mvc:annotation-driven>

 <mvc:async-support
default-timeout="10000" >

.....

</mvc:async-support>

</mvc:annotation-driven>

In the
above example listing, default timeout for asynchronous requests is set to 10 seconds. If
you don’t specify the default timeout, the timeout for asynchronous requests depends
on the Servlet container on which you deployed your web
application.

Let’s now
look at how you can intercept asynchronous requests using CallableProcessingInterceptor and DeferredResultProcessingInterceptor.

Intercepting asynchronous requests

If you are
using Callable to asynchronously process requests, you can use CallableProcessingInterceptor callback interface to intercept requests before and after the Callable task
is executed. For instance, the postProcess method is executed after the Callable has produced the result, and
the preProcess method is called before the Callable task is executed. Similarly,
if you are using DeferredResult, you can use DeferredResultProcessingInterceptor callback interface to intercept processing of asynchronous requests.

You can
configure a CallableProcessingInterceptor using <callable-interceptors> element of Spring’s mvc schema. And, you can configure a DeferredResultProcessingInterceptor
using <deferred-result-interceptors> element of Spring’s mvc schema. The following example listing shows configuration of MyDeferredResultInterceptor (a DeferredResultProcessingInterceptor implementation):

Example listing 13-14 –
Configuring a DeferredResultProcessingInterceptor implementation

Project – ch13-async-webservice

Source location – src/main/webapp/WEB-INF/spring/webservice-config.xml

<mvc:annotation-driven>

<mvc:async-support default-timeout="30000">

<mvc:deferred-result-interceptors>

<bean
class="sample.spring.chapter13.web.MyDeferredResultInterceptor"/>

</mvc:deferred-result-interceptors>

</mvc:async-support>

 </mvc:annotation-driven>

Let’s now
look at Spring’s support for type conversion and formatting.

13-5 Type conversion and formatting
support in Spring

Spring’s Converter interface simplifies converting an object type to another object
type. And, Spring’s Formatter interface is useful when converting an object type to its localized String
representation, and vice versa. You can find a number of built-in Converter
implementations in the org.springframework.core.convert.support package of spring-core JAR file. Spring also provides built-in Formatters for
java.lang.Number and java.util.Date types that you can find in org.springframework.format.number and org.springframework.format.datetime
packages, respectively.

IMPORT chapter
13/ch13-converter-formatter-bankapp (This project is a variant of ch13-bankapp project that shows how
to create custom Converters and Formatters)

Let’s
first look at how to create a custom Converter.

Creating a custom Converter

A
converter implements Spring’s Converter<S,
T> interface, where S (referred to
as the source type) is the type of the object given to the converter, and T (referred to
as the target type) is the type of the object to which S is converted
by the converter. Converter interface defines a convert method that provides the conversion logic.

The
following example listing shows the IdToFixedDepositDetailsConverter that
converts an object of type String (representing the fixed deposit ID) to an object of type FixedDepositDetails (representing the fixed deposit corresponding to the fixed deposit
ID):

Example listing 13-15 – Converter implementation

Project – ch13-converter-formatter-bankapp

Source location – src/main/java/sample/spring/chapter13/converter

package
sample.spring.chapter13.converter;

import
org.springframework.core.convert.converter.Converter;

.....

public
class IdToFixedDepositDetailsConverter implements Converter<String,
FixedDepositDetails> {

@Autowired

 private
FixedDepositService fixedDepositService;

@Override

public FixedDepositDetails convert(String source) {

return fixedDepositService.getFixedDeposit(Integer.parseInt(source));

}

}

IdToFixedDepositDetailsConverter implements Converter<String,
FixedDepositDetails> interface, where String is the
source type and FixedDepositDetails is the target type. IdToFixedDepositDetailsConverter’s convert method
uses FixedDepositService’s getFixedDeposit method to retrieve the FixedDepositDetails object
corresponding to the fixed deposit ID.

Let’s now
look at how to configure and use a custom converter.

Configuring and using a custom Converter

To use a
custom converter, you need to register the custom converter with Spring’s ConversionService. A ConversionService acts as a registry of Converters and Formatters,
and Spring delegates type conversion responsibility to the registered ConversionService. By default, the <annotation-driven> element of Spring’s mvc schema automatically registers Spring’s FormattingConversionService (an implementation of ConversionService) with the Spring
container. Spring comes with a couple of built-in converters and formatters
that are automatically registered with the FormattingConversionService. If you
want to substitute a different implementation of ConversionService, you can do so by
using conversion-service attribute of <annotation-driven> element.

To
register custom converters with the FormattingConversionService instance,
configure Spring’s FormattingConversionServiceFactoryBean (a FactoryBean implementation that creates and configures a FormattingConversionService instance) and specify custom converters as part of the
configuration, as shown in the following example listing:

Example listing 13-16 –
Registering a custom Converter with FormattingConversionService

Project – ch13-converter-formatter-bankapp

Source location – src/main/webapp/WEB-INF/spring

<mvc:annotation-driven
conversion-service="myConversionService" />

<bean
id="myConversionService"

class="org.springframework.format.support.FormattingConversionServiceFactoryBean">

 <property
name="converters">

<set>

<bean class="sample.spring.chapter13.converter.IdToFixedDepositDetailsConverter"
/>

</set>

</property>

.....

</bean>

By
default, FormattingConversionServiceFactoryBean registers only
the built-in converters and formatters with the FormattingConversionService instance.
You register custom converters and formatters using FormattingConversionServiceFactoryBean’s converters and formatters properties. As we want our Spring application to use FormattingConversionService instance created by the FormattingConversionServiceFactoryBean, the conversion-service attribute of <annotation-driven> element refers to the FormattingConversionServiceFactoryBean.

The
converters and formatters registered with the FormattingConversionService are used
by the Spring container to perform type conversion during data binding. In the following example listing, FixedDepositController’s viewFixedDepositDetails method shows a scenario in which the Spring container uses IdToFixedDepositDetailsConverter<String,
FixedDepositDetails> to convert fixed deposit
ID (of type String) to FixedDepositDetails instance:

Example listing 13-17 – FixedDepositController’s viewFixedDepositDetails method

Project – ch13-converter-formatter-bankapp

Source location – src/main/java/sample/spring/chapter13/web

package
sample.spring.chapter13.web;

.....

public
class FixedDepositController {

.....

@RequestMapping(params = "fdAction=view", method = RequestMethod.GET)

public ModelAndView viewFixedDepositDetails(

@RequestParam(value = "fixedDepositId") FixedDepositDetails
fixedDepositDetails) {

}

}

@RequestParam annotation specifies
that the value of fixedDepositId request parameter is assigned to the fixedDepositDetails method argument.
The fixedDepositId request parameter uniquely identifies a fixed deposit. As the fixedDepositId
request parameter is of type String and method argument type is FixedDepositDetails, Spring uses IdToFixedDepositDetailsConverter<String,
FixedDepositDetails> to perform the type
conversion.

The use of
ConversionService is not limited to the web layer. You can use ConversionService to programmatically perform type conversion in any layer of your
application. The following example listing shows a variant of FixedDepositController’s viewFixedDepositDetails method that uses ConversionService directly for performing type conversion:

Example listing 13-18 –
Performing type conversion programmatically

import
org.springframework.core.convert.ConversionService;

.....

public
class FixedDepositController {

@Autowired

 private
ConversionService conversionService;

.....

@RequestMapping(params = "fdAction=view", method = RequestMethod.GET)

public ModelAndView viewFixedDepositDetails(HttpServletRequest request)
{

String fixedDepositId = request.getParameter("fixedDepositId");

FixedDepositDetails fixedDepositDetails =

conversionService.convert(fixedDepositId, FixedDepositDetails.class);

.....

}

}

In the
above example listing, ConversionService instance that is registered with the Spring container is autowired
into the FixedDepositController. The viewFixedDepositDetails method uses ConversionService’s convert method to convert fixedDepositId (of type String) to FixedDepositDetails. Behind the scenes, ConversionService makes use of the IdToFixedDepositDetailsConverter<String,
FixedDepositDetails> converter registered
with it to perform the type conversion.

Now that
we have seen how to create and use a custom Converter, let’s now look at how to
create and use a custom Formatter.

Creating a custom Formatter

A
formatter converts an object of type T to a String value for display purposes,
and parses a String value to the object type T. A formatter implements Spring’s Formatter<T > interface, where T is the type of the object that the formatter formats. This may
sound similar to what PropertyEditors do in web applications. As we’ll see in this chapter, Formatters
offer a more robust alternative to PropertyEditors.

NOTE Spring’s tag library tags use the formatters
registered with the FormattingConversionService to perform type conversion during data binding and
rendering.

The
following example listing shows the AmountFormatter that is used by the
MyBank application to display fixed deposit amount in the currency that applies
to the user’s locale, and to parse the fixed deposit amount entered by the
user. For simplicity, currency conversion is not applied on the fixed deposit
amount; the currency symbol that applies to the user’s locale is simply appended
to the fixed deposit amount.

Example listing 13-19 – AmountFormatter - a Formatter implementation

Project – ch13-converter-formatter-bankapp

Source location – src/main/java/sample/spring/chapter13/formatter

package
sample.spring.chapter13.formatter;

import
java.text.ParseException;

import
java.util.Locale;

import
org.springframework.format.Formatter;

public
class AmountFormatter implements Formatter<Long>{

@Override

 public
String print(Long object, Locale locale) {

String returnStr = object.toString() + " USD";

if(locale.getLanguage().equals(new Locale("de").getLanguage())) {

returnStr = object.toString() + " EURO";

}

return returnStr;

}

@Override

public Long parse(String text, Locale locale) throws ParseException {

String str[] = text.split(" ");

return Long.parseLong(str[0]);

}

}

AmountFormatter implements Formatter<Long> interface, which means that the AmountFormatter applies to Long type
objects. The print method converts the Long type object (representing the fixed deposit amount) to a String value
that is displayed to the user. Based on the language code obtained from the
locale, the print method simply appends USD (for en language
code) or EURO (for de language code) to the fixed deposit amount. For instance, if the
fixed deposit amount is 1000 and the language code is de, the print method
returns ‘1000 EURO’. The parse method takes the fixed deposit amount entered by the user (like, ‘1000 EURO’)
and converts it into a Long type object by simply extracting the fixed deposit amount from the user
entered value.

Let’s now
look at how to configure a custom formatter.

Configuring a custom Formatter

You can
register custom formatters with the FormattingConversionService using the
formatters property of FormattingConversionServiceFactoryBean, as shown here:

Example listing 13-20 –
Registering a custom Formatter with FormattingConversionService

<beans
.....>

.....

<mvc:annotation-driven conversion-service="myConversionService"
/>

.....

<bean id="myConversionService"

class="org.springframework.format.support.FormattingConversionServiceFactoryBean">

<property name="formatters">

<set>

<bean class="sample.spring.chapter13.formatter.AmountFormatter"
/>

</set>

</property>

</bean>

</beans>

AmountFormatter registered with the FormattingConversionService is applied to all the
Long type fields during data binding and rendering.

You can
control the fields on which a Formatter applies by using Spring’s AnnotationFormatterFactory. An AnnotationFormatterFactory implementation creates formatters for fields that are annotated with
a particular annotation. Let’s see how we can use AnnotationFormatterFactory to format
only the Long type fields annotated with @AmountFormat annotation.

Creating AnnotationFormatterFactory to format only @AmountFormat annotated fields

The
following example listing shows the definition of @AmountFormat
annotation:

Example listing 13-21 – AmountFormat annotation

Project – ch13-converter-formatter-bankapp

Source location – src/main/java/sample/spring/chapter13/formatter

package
sample.spring.chapter13.formatter;

.....

@Target(value={ElementType.FIELD})

@Retention(RetentionPolicy.RUNTIME)

@Documented

public @interface AmountFormat { }

In the
above example listing, the @Target annotation specifies that the @AmountFormat annotation can only appear
on fields.

The
following example listing shows the implementation of AnnotationFormatterFactory that creates formatters for fields annotated with @AmountFormat
annotation:

Example listing 13-22 – AmountFormatAnnotationFormatterFactory class

Project – ch13-converter-formatter-bankapp

Source location – src/main/java/sample/spring/chapter13/formatter

package
sample.spring.chapter13.formatter;

import
org.springframework.format.AnnotationFormatterFactory;

import
org.springframework.format.Parser;

import
org.springframework.format.Printer;

public class
AmountFormatAnnotationFormatterFactory implements

 AnnotationFormatterFactory<AmountFormat>
{

public Set<Class<?>> getFieldTypes() {

Set<Class<?>> fieldTypes = new HashSet<Class<?>>(1, 1);

fieldTypes.add(Long.class);

return fieldTypes;

}

public Parser<?> getParser(AmountFormat annotation, Class<?>
fieldType) {

return new AmountFormatter();

}

public Printer<?> getPrinter(AmountFormat annotation, Class<?>
fieldType) {

return new AmountFormatter();

}

}

In the
above example listing, AmountFormatAnnotationFormatterFactory implements
AnnotationFormatterFactory<AmountFormat>
interface, which means that the AmountFormatAnnotationFormatterFactory
creates formatters for fields annotated with @AmountFormat annotation.

The getFieldTypes
method returns the field types that may be annotated with @AmountFormat
annotation. The getFieldTypes method in the above example listing returns a single type, Long type,
which means that only a Long type field that is annotated with @AmountFormat annotation is
considered for formatting by the formatters created by the AmountFormatAnnotationFormatterFactory. The getParser and getPrinter methods return formatters for fields that are annotated with @AmountFormat
annotation. You should note that the Formatter interface is a
sub-interface of Parser and Printer interfaces.

Configuring AnnotationFormatterFactory implementation

As in case
of Formatters configuration, an AnnotationFormatterFactory implementation is registered with FormattingConversionService via formatters
property of FormattingConversionServiceFactoryBean:

Example listing 13-23 – AmountFormatAnnotationFormatterFactory configuration

Project – ch13-converter-formatter-bankapp

Source location – src/main/webapp/WEB-INF/spring

<beans
.....>

.....

<mvc:annotation-driven conversion-service="myConversionService"
/>

.....

<bean id="myConversionService"

class="org.springframework.format.support.FormattingConversionServiceFactoryBean">

<property name="formatters">

<set>

<bean

class="sample.spring.chapter13.formatter.AmountFormatAnnotationFormatterFactory"
/>

</set>

</property>

</bean>

</beans>

Now that we have seen how
to use AnnotationFormatterFactory
to enable formatting of fields that are annotated with a specific annotation,
let’s look at how it is used in ch13-converter-formatter-bankapp
project.

The
following figure shows the web page of ch13-converter-formatter-bankapp
project that shows the lists of fixed deposits:

Figure
13-4 - The ‘Deposit amount’ column shows USD or EURO depending upon
the language code obtained from the user’s current locale

The above figure shows that
USD is appended to the fixed deposit amount if the language chosen by the user
is English. If you switch the language to German, the USD will be replaced by
EURO. In example listing 13-19, we saw that the AmountFormatter
contained the logic to show USD or EURO depending upon the language code
obtained from the user’s current locale.

To ensure that the
formatters configured with the FormattingConversionService
are invoked during page rendering and form submission, Spring’s
tag library tags (like, <eval> and <input>) have been used in the JSP pages of ch13-converter-formatter-bankapp
project.

Let’s now look at how
Spring Web MVC simplifies uploading files.

13-6 File upload support in Spring Web
MVC

You can handle multipart
requests in your Spring Web MVC applications by configuring a MultipartResolver. Spring
provides the following out-of-the-box implementations of MultipartResolver interface
that you can use in your web applications:

§ CommonsMultipartResolver – based on Apache
Commons FileUpload
library

§ StandardServletMultipartResolver – based on Servlet 3.0 Part API

When a multipart request is
received, DispatcherServlet
uses the configured MultipartResolver
to wrap the HttpServletRequest
into a MultipartHttpServletRequest
instance. In Spring Web MVC, an uploaded file is represented by the MultipartFile object. The
controller responsible for handling file uploads accesses the uploaded file
using methods defined by the MultipartHttpServletRequest or by directly accessing the MultipartFile object.

Let’s
first look at a sample web application that uses CommonsMultipartResolver for
uploading files.

IMPORT chapter
13/ch13-commons-file-upload (This project shows how to use CommonsMultipartResolver to upload
files. As CommonsMultipartResolver uses Apache Commons
FileUpload library, the
project is dependent on commons-fileupload JAR file.)

Uploading files using CommonsMultipartResolver

The following example
listing shows the file upload form that is displayed by ch13-commons-file-upload project:

Example listing 13-24 – uploadForm.jsp – shows the upload form

Project – ch13-commons-file-upload

Source location – src/main/webapp/WEB-INF/jsp

.....

<form method="post" action="/ch13-commons-file-upload/uploadFile"

enctype="multipart/form-data">

<table style="padding-left: 200px;">

<tr>

 <td
colspan="2"><c:out value="${uploadMessage}" /></td>

</tr>

<tr>

<td>Select the file to be uploaded:
 </td>

<td><input type="file" name="myFileField" /></td>

</tr>

<tr>

<td colspan="2" align="center"><input
type="button"

value="Upload file" onclick="document.forms[0].submit();"
/></td>

</tr>

</table>

</form>

.....

The above
example listing shows that the enctype attribute of <form> element is set to multipart/form-data, which means that the form submission results in sending multipart
request to the server. The uploadMessage request attribute shows the success or failure message after the
user selects a file and clicks the ‘Upload file’ button.

The
following example listing shows the configuration of CommonsMultipartResolver that resolves multipart requests:

Example listing 13-25 – fileupload-config.xml – CommonsMultipartResolver configuration

Project – ch13-commons-file-upload

Source location – src/main/webapp/WEB-INF/spring

<bean id="multipartResolver"

class="org.springframework.web.multipart.commons.CommonsMultipartResolver">

<property name="maxUploadSize" value="100000"
/>

<property name="resolveLazily" value="true" />

 </bean>

It is
important to note that the MultipartResolver implementation must be configured with id as multipartResolver in the web application context XML file. The maxUploadSize
property specifies the maximum size (in bytes) of the file that can be
uploaded. If you attempt to upload a file whose size is greater than 100 KB,
the CommonsMultipartResolver shown in the above example listing will throw an exception. If an
exception is thrown by the CommonsMultipartResolver instance, the controller responsible for handling the file upload
doesn’t get the opportunity to handle the exception. For this reason, the resolveLazily
property is set to true. If the resolveLazily property is set to true, the multipart request is resolved only when the uploaded file is
accessed by the controller. This gives the opportunity to the controller to
handle exceptions that occur during multipart request resolution.

The
following example listing shows the FileUploadController that handles
file uploads:

Example listing 13-26 – FileUploadController

Project – ch13-commons-file-upload

Source location – src/main/java/sample/spring/chapter13/web

package
sample.spring.chapter13.web;

import
org.springframework.web.multipart.MultipartFile;

.....

public
class FileUploadController {

.....

@RequestMapping(value = "/uploadFile", method = RequestMethod.POST)

 public
ModelAndView handleFileUpload(

@RequestParam("myFileField") MultipartFile file) throws
IOException {

ModelMap modelData = new ModelMap();

if (!file.isEmpty()) {

// -- save the uploaded file on the filesystem

String successMessage = "File successfully uploaded";

modelData.put("uploadMessage", successMessage);

return new ModelAndView("uploadForm", modelData);

}

.....

}

 @ExceptionHandler(value
= Exception.class)

public ModelAndView handleException() {

.....

}

}

FileUploadController’s handleFileUpload method accepts an argument of type MultipartFile which identifies the
uploaded file. Notice that the @RequestParam annotation specifies name of the <input type=”file”> field
in the uploadForm.jsp page (refer example listing 13-24). If the file is successfully
uploaded, the handleFileUpload method sets a success message which is shown to the user. @ExceptionHandler method shows an error message in case an exception occurs during
file upload process. For instance, if the file size is greater than 100 KB, an
error message is shown to the user.

Now that
we have seen how to use CommonsMultipartResolver to upload files, let’s look at how to upload files using StandardServletMultipartResolver.

IMPORT chapter
13/ch13-servlet3-file-upload (This project shows how to use StandardServletMultipartResolver to
upload files.)

Uploading files using StandardServletMultipartResolver

The
support for handling multipart request is provided out-of-the-box in Servlet 3.
If you want to use the multipart support provided by Servlet 3, enable
multipart request handling by specifying <multipart-config> element in
the DispatcherServlet configuration, and configure StandardServletMultipartResolver in
the web application context XML file. Unlike, CommonsMultipartResolver, StandardMultipartResolver doesn’t define any properties.

The
following example listing shows the DispatcherServlet configuration in web.xml file:

Example listing 13-27 – web.xml

Project – ch13-servlet3-file-upload

Source location – src/main/webapp

<servlet>

<servlet-name>fileupload</servlet-name>

<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

.....

<multipart-config>

<max-file-size>10000</max-file-size>

</multipart-config>

 </servlet>

As the <multipart-config> element is specified, the fileupload servlet can handle multipart requests. The <max-file-size> element
specifies the maximum file size that can be uploaded. Notice that the maximum
file size is now specified as part of <multipart-config>
element.

13-7 Summary

In this chapter, we looked
at some of the important features of Spring Web MVC framework that simplify
developing web applications. In the next chapter, we’ll look at how to secure
Spring applications using Spring Security framework.

Chapter 14 – Securing applications using Spring
Security

14-1 Introduction

Security
is an important aspect of any application. Spring Security is built on top of
Spring Framework, and provides a comprehensive framework for securing
Spring-based applications. In this chapter, we’ll look at how to use Spring
Security framework to:

§ authenticate
users

§ implement
web request security,

§ implement
method-level security

§ secure
domain objects using ACL (Access Control List) based security

Let’s
begin by looking at the MyBank web application’s security requirements that
we’ll address using Spring Security.

14-2 Security requirements of the MyBank
web application

The users
of the MyBank web application are customers and administrators that manage fixed deposits in the system. A customer can open and
edit fixed deposits but can’t close them. An administrator can’t
create or edit fixed deposits but can close fixed deposits of customers.

As only
authenticated users can access the MyBank web application, a login form is
displayed to unauthenticated users:

Figure 14-1 - Login form that is
displayed to unauthenticated users

The above
figure shows the login form that is displayed to unauthenticated users. If the
user selects the ‘Remember me on
this computer’ checkbox, the MyBank web application
remembers the credentials entered by the user and uses it for automatic
authentication of the user in future visits.

When a customer logs in, details of the fixed deposits
associated with the customer are displayed, as shown here:

Figure 14-2 - Fixed deposits of
the customer are displayed after authentication

The above
figure shows a Logout hyperlink that the customer can click to logout from the MyBank web
application. A customer can edit details of a fixed deposit by clicking the Edit hyperlink
corresponding to that fixed deposit. A customer can view the form for opening a
new fixed deposit by clicking the Create new Fixed Deposit button.
Notice that the username of the authenticated user is displayed below the Logout
hyperlink.

When an
administrator logs in, details of all the fixed deposits in
the system are displayed by the MyBank web application, as shown here:

Figure 14-3 - Fixed deposits of all the
customer are displayed to an administrator

In the
above figure, an administrator can choose to close a fixed deposit by clicking
the Close hyperlink corresponding to that fixed deposit. As in case of
customers, the Create new Fixed
Deposit button is visible to an administrator
also, but an attempt to save details of the new fixed deposit will result in a
security exception thrown by the application.

Let’s now
look at how to address the security requirements of MyBank web application
using Spring Security.

IMPORT chapter
14/ch14-bankapp-simple-security (This project represents the MyBank web application that uses Spring
Security framework for addressing security requirements described in section
14-2.)

14-3 Securing MyBank web application
using Spring Security

Spring
Security framework consists of multiple modules that address various security
aspects of applications. The following table describes some of the important
modules of Spring Security:

 	
 Module

 	
 Description

 	
 spring-security-core

 	
 Defines the core classes and interfaces of Spring Security
 framework. This module is required by any application that uses Spring
 Security.

 	
 spring-security-web

 	
 Provides support for securing web applications

 	
 spring-security-config

 	
 Like Spring’s tx and mvc schemas, Spring Security defines a security schema that simplifies
 configuring Spring Security features. The spring-security-config module is
 responsible for parsing the elements of the security namespace.

 	
 spring-security-taglibs

 	
 Defines tags that you can use to access security information and
 to secure the content displayed by JSP pages

 	
 spring-security-acl

 	
 Enables use of ACLs (Access Control List) to secure instances of
 domain objects in applications

In this
section, we’ll look at usage of spring-security-core, spring-security-web, spring-security-config and spring-security-taglibs modules to secure the MyBank web application. Later in this
chapter, we’ll look at how to use spring-security-acl module to secure
domain object instances.

Let’s
begin by looking at how web request security is configured.

Web request security configuration

You can
add web request security to an application by:

§ configuring
Spring’s DelegatingFilterProxy filter in the web.xml file, and

§ enabling
web request security provided by the Spring Security
framework

Let’s
first look at how to configure DelegatingFilterProxy filter.

DelegatingFilterProxy filter
configuration

Spring
Framework’s web module (represented by spring-web-4.0.0.RELEASE.jar file)
defines the DelegatingFilterProxy class that implements Servlet API’s Filter interface. The following
example listing shows the configuration of DelegatingFilterProxy filter in the web.xml file:

Example listing 14-1 – web.xml - DelegatingFilterProxy filter configuration

Project – ch14-bankapp-simple-security

Source location - src/main/webapp/WEB-INF

<filter>

<filter-name>springSecurityFilterChain</filter-name>

<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

<filter-name>springSecurityFilterChain</filter-name>

<url-pattern>/*</url-pattern>

 </filter-mapping>

The <filter-mapping> element specifies that the DelegatingFilterProxy filter is
mapped to all incoming web requests. The filter name specified by the <filter-name> element carries a special significance in the context of DelegatingFilterProxy filter. DelegatingFilterProxy filter delegates request processing to the Spring bean whose name
matches the value of <filter-name> element. In the above example listing, web requests received by the
DelegatingFilterProxy filter are delegated to the Spring bean named springSecurityFilterChain in the root application context. We’ll soon see that the springSecurityFilterChain bean is created by the Spring Security framework.

Now, that
we have configured the DelegatingFilterProxy filter, let’s look at how to configure web request security.

Configuring web
request security

The
following example listing shows the application context file that uses <http> element of security schema to configure web request security:

Example listing 14-2 – applicationContext-security.xml – web security configuration

Project – ch14-bankapp-simple-security

Source location - src/main/resources/META-INF/spring

<beans:beans
xmlns="http://www.springframework.org/schema/security"

 xmlns:beans="http://www.springframework.org/schema/beans"

xsi:schemaLocation=".....

http://www.springframework.org/schema/security

http://www.springframework.org/schema/security/spring-security-3.2.xsd">

<http use-expressions="true">

<intercept-url pattern="/**" access="hasAnyRole('ROLE_CUSTOMER',
'ROLE_ADMIN')" />

<form-login />

<logout />

<remember-me />

<headers>

<cache-control/>

<xss-protection/>

</headers>

</http>

.....

</beans:beans>

The above example listing
shows that the spring-security-3.2.xsd
schema is referenced by the application context XML file. The spring-security-3.2.xsd schema
is contained in the org.springframework.security.config
package of spring-security-config-3.2.0.RELEASE.jar
file.

The <http> element contains the web request security
configuration for the application. Spring Security framework parses the <http> element and
registers a bean named springSecurityFilterChain
with the Spring container. The springSecurityFilterChain
bean is responsible for handling web request security. The DelegatingFilterProxy filter
that we configured earlier (refer example listing 14-1) delegates web request
handling to the springSecurityFilterChain
bean. The springSecurityFilterChain
bean represents an instance of FilterChainProxy bean (refer Spring Security docs for more information) that contains a chain of Servlet filters that are added to the chain by the sub-elements of <http>
element.

The <intercept-url> element’s access attribute specifies a Spring EL expression that evaluates to a
boolean value. If the Spring EL expression returns true, the URLs
matched by the pattern attribute are accessible to the user. If the Spring EL expression
returns false, access is denied to the URLs matched by the pattern
attribute. Spring Security framework provides a couple of built-in expressions,
like hasRole, hasAnyRole, isAnonymous, and so on.

In example
listing 14-2, the hasAnyRole('ROLE_CUSTOMER',
'ROLE_ADMIN') expression returns true if the
authenticated user has ROLE_CUSTOMER or ROLE_ADMIN role. In MyBank web application, the ROLE_CUSTOMER role is assigned to a
customer and the ROLE_ADMIN role is assigned to an administrator. As the pattern /* matches all
URLs, the <intercept-url> element in example listing 14-2 specifies that only a user with
role ROLE_CUSTOMER or ROLE_ADMIN can access the MyBank web application. You should note that the use
of Spring EL expression in the access attribute is allowed only if you set the value of use-expressions attribute of <http> element to true.

The <form-login> element configures a login page that is used to authenticate users.
You can use various attributes of <form-login> element, like login-page, default-target-url, and so on, to customize the login page. The login-page
attribute specifies the URL that is used to render the login page. If the login-page attribute
is not specified, a login page is automatically rendered at the /spring_security_login URL.

The <logout> element configures the logout processing feature of Spring Security
framework. You can use various attributes of <logout> element, like logout-url, delete-cookies,
invalidate-session, and so on, to configure the logout functionality. For instance,
you can use the delete-cookies attribute to specify comma-separated names of cookies that should
be deleted when the user logs out of the application. The logout-url
attribute allows you to configure the URL that performs the logout processing.
If you don’t specify the logout-url attribute, the logout-url attribute value is set to /j_spring_security_logout by default.

The <remember-me> element configures the ‘remember-me’ authentication in which the
web application remembers the identity of the authenticated user between
sessions. When a user is successfully authenticated, Spring Security framework
generates a unique token that can either be stored in a persistent store or
sent to the user in a cookie. In example listing 14-2, <remember-me> element configures a cookie-based remember-me authentication
service. When the user revisits the web application, the token is retrieved
from the cookie and is automatically authenticated.

The <headers> element specifies the security headers that are added to the HTTP
response by the Spring Security framework. For instance, in example listing
14-2, the <cache-control> element adds Cache-Control, Pragma and Expires response headers, and the <xss-protection> element adds X-XSS-Protection header.

When an
unauthenticated user accesses the MyBank web application, Spring Security
displays the login page (refer figure 14-1) configured by the <form-login> element to the user. Let’s now look at how authentication is
performed when the user enters his credentials and clicks the Login button.

Authentication configuration

When a user enters his
credentials and submits the login page, Spring Security’s AuthenticationManager is
responsible for processing the authentication request. An AuthenticationManager is
configured with one or more AuthenticationProviders
against which the AuthenticationManager
attempts to authenticate users. For instance, if you want to authenticate users
against an LDAP server, you can configure an LdapAuthenticationProvider (an implementation of AuthenticationProvider) that
authenticates users against an LDAP server.

The security schema simplifies configuration of AuthenticationManager and AuthenticationProvider objects, as shown in the following example listing:

Example listing 14-3 – applicationContext-security.xml

Project – ch14-bankapp-simple-security

Source location - src/main/resources/META-INF/spring

 <authentication-manager>

<authentication-provider>

<user-service>

<user name="admin" password="admin"
authorities="ROLE_ADMIN" />

 <user
name="cust1" password="cust1"
authorities="ROLE_CUSTOMER" />

<user name="cust2" password="cust2"
authorities="ROLE_CUSTOMER" />

</user-service>

</authentication-provider>

 </authentication-manager>

The <authentication-manager> element configures an AuthenticationManager instance. The <authentication-provider> element configures an AuthenticationProvider instance. By
default, the <authentication-provider> element configures a DaoAuthenticationProvider (an
implementation of AuthenticationProvider) that uses Spring’s UserDetailsService as a DAO to load user details.

DaoAuthenticationProvider uses the configured UserDetailsService to load user details from the user repository based on the supplied
username. DaoAuthenticationProvider performs authentication by comparing the login credentials supplied
by the user with the user details loaded by the configured UserDetailsService. You should note that a UserDetailsService may load user
details from a data source, a flat file or any other user repository.

The <user-service> sub-element of <authentication-provider> configures an in-memory UserDetailsService that loads users defined by the <user> elements. In example
listing 14-3, the <user-service> element defines that the application has three users: admin (ROLE_ADMIN
role), cust1 (ROLE_CUSTOMER role) and cust2 (ROLE_CUSTOMER role). The name attribute specifies the username assigned to the user, the password
attribute specifies the password assigned to the user, and authorities
attribute specifies the role(s) assigned to the user.

Now, if
you deploy the ch14-bankapp-simple-security project and access it by going to the http://localhost:8080/ch14-bankapp-simple-security URL, the login page (refer figure 14-1) of the web application is
displayed. If you authenticate by entering username as cust1 and
password as cust1, the web application will display fixed deposits associated with cust1 (refer
figure 14-2) user. Similarly, if you login with username as cust2 and
password as cust2, the web application will display fixed deposits associated with cust2 user. If
you login with username as admin and password as admin, the web application will display fixed deposits of both cust1 and cust2 users.

Let’s now
look at how to use Spring Security’s JSP tag library to access security
information and to apply security constraints on the content displayed by JSP
pages.

Securing JSP
content using Spring Security’s JSP tab library

One of the
requirements of MyBank web application is that the option to edit a fixed
deposit (refer figure 14-2) is available only to users with role ROLE_CUSTOMER.
And, the option to close a fixed deposit (refer figure 14-3) is available only
to user with role ROLE_ADMIN. As we need to secure Edit and Close
hyperlinks based on the authenticated user’s role, the MyBank web application
uses Spring Security’s JSP tag library to secure JSP content.

The
following example listing shows usage of Spring Security’s JSP tag library to
access authenticated user’s username, and to secure JSP content based on the
role of the logged in user:

Example listing 14-4 – fixedDepositList.jsp

Project – ch14-bankapp-simple-security

Source location - src/main/webapp/WEB-INF/jsp

<%@
taglib uri="http://www.springframework.org/security/tags"
prefix="security"%>

.....

<body>

.....

<td style="font-family: 'arial'; font-size: 12px; font-weight:
bold" align="right">

Logout

<p>

Username: <security:authentication property="principal.username"
/>

</p>

</td>

.....

<td class="td">

 <security:authorize
access="hasRole('ROLE_CUSTOMER')">

 <a href="${pageContext.request.contextPath}/fixedDeposit?....."
>Edit

 </security:authorize>

 <security:authorize
access="hasRole('ROLE_ADMIN')">

 Close

 </security:authorize>

 </td>

</body>

</html>

The above
example listing shows that the Logout hyperlink refers to ${pageContext.request.contextPath}/j_spring_security_logout URL. As mentioned earlier, if you don’t specify the logout-url
attribute of <logout> element, the logout-url value is set to /j_spring_security_logout. So, when a user clicks the Logout hyperlink, the user is logged
out of the MyBank web application.

The above
example listing also shows that the JSP page includes Spring Security’s JSP tag
library using the taglib directive. Spring Security’s Authentication object contains
information about the authenticated user. For instance, it contains information
about authenticated user’s role(s) and username that the user used for
authentication. The <authentication> element prints the specified property of the Authentication
object. In the above example, the principal.username property refers to
the username property of the authenticated user.

The <authorize> element secures the enclosed JSP content based on the result of
evaluation of the security expression specified by the access
attribute. If the security expression evaluates to true, the
enclosed content is rendered, otherwise the enclosed content is not rendered. In
the above example listing, the hasRole(‘ROLE_CUSTOMER’) expression returns true if the authenticated user has ROLE_CUSTOMER role, and the hasRole(‘ROLE_ADMIN’) expression returns true if the authenticated user has ROLE_ADMIN role. In the above example
listing, the hasRole expression has been used such that the Edit option is
displayed only to a user with ROLE_CUSTOMER role and the Close option is displayed only to a user with ROLE_ADMIN
role.

Let’s now
look at how to incorporate method-level security using Spring Security.

Securing methods

One of the
requirements of MyBank application is that a user with ROLE_ADMIN
role can view the ‘Create new
Fixed Deposit’ button (refer figure 14-3) but an
attempt to save details of the new fixed deposit will result in a security
exception. This is an example in which we want to secure the FixedDepositService’s saveFixedDeposit method such that only a user with ROLE_CUSTOMER role can invoke it.

We also
want to secure other methods of the FixedDepositService so that it is not
invoked by unauthorized users. For instance, cust1 user logged in with ROLE_CUSTOMER
can invoke the FixedDepositService’s closeFixedDeposit method to close an existing fixed deposit by entering the following
URL in the browser:

http://localhost:8080/ch14-bankapp-simple-security/fixedDeposit?fdAction=close&fixedDepositId=<fixed-fixed-id>

The <fixed-deposit-id> in the above URL is the fixed deposit id that you want to remove,
as highlighted in the following figure:

Figure 14-4 – Fixed deposit ID of
a fixed deposit is displayed in the ID column

To add
method-level security to your application, you need to do the following:

§ configure
method-level security for your application by using <global-method-security> element of security schema

§ add @Secured
annotations to the methods that you want to secure against unauthorized access

Let’s
first look at the <global-method-security> element.

Configuring
method-level security using <global-method-security> element

The
following example listing shows usage of <global-method-security>
element:

Example listing 14-5 – applicationContext-security.xml

Project – ch14-bankapp-simple-security

Source location - src/main/resources/META-INF/spring

<beans:beans
xmlns="http://www.springframework.org/schema/security"

.....>

<global-method-security secured-annotations="enabled" />

</beans:beans>

The <global-method-security> element configures method-level security. The <global-method-security> element is applicable only to the application context in which it
is defined. For instance, if the <global-method-security>
element is defined in the root web application context XML file, then it is applicable only to the
beans registered with the root WebApplicationContext instance. In ch14-bankapp-simple-security project, the applicationContext-security.xml (shown in the above example listing) and the applicationContext.xml (that defines services and DAOs) files constitute the root web
application context XML files (refer web.xml file of ch14-bankapp-simple-security project); therefore, the <global-method-security>
element applies only to the beans defined in these application context XML files.

The <global-method-security> element’s secured-annotations attribute specifies whether the use of Spring’s @Secured
annotation should be enabled or disabled for the beans registered with the Spring
container. As the value is set to enabled, you can use Spring’s @Secured
annotation to specify the bean methods that are secured.

NOTE If you
want to secure controller methods, then define the <global-method-security> element in the web application context XML file instead of
the root web application context XML file.

Let’s now
look at how to secure methods using Spring’s @Secured annotation.

Specifying security
constraints on bean methods using @Secured annotation

The
following example listing shows usage of Spring’s @Secured
annotation to define security constraints on methods:

Example listing 14-6 – FixedDepositService interface

Project – ch14-bankapp-simple-security

Source location - src/main/java/sample/spring/chapter14/service

package
sample.spring.chapter14.service;

import
org.springframework.security.access.annotation.Secured;

.....

public
interface FixedDepositService {

.....

 @Secured("ROLE_CUSTOMER")

void saveFixedDeposit(FixedDepositDetails fixedDepositDetails);

.....

 @Secured("ROLE_ADMIN")

void closeFixedDeposit(int fixedDepositId);

 @Secured("ROLE_CUSTOMER")

void editFixedDeposit(FixedDepositDetails fixedDepositDetails);

}

The above
example listing shows the FixedDepositService interface that defines methods that operate on fixed deposits. @Secured("ROLE_CUSTOMER") annotation on the saveFixedDeposit and editFixedDeposit methods specifies that these methods can only be invoked by a user
whose role is ROLE_CUSTOMER. @Secured("ROLE_ADMIN") annotation on the closeFixedDeposit method specifies that the method can only be invoked by a user
whose role is ROLE_ADMIN.

NOTE
By default, method-level security is based on Spring AOP. If you want to use
AspectJ instead of Spring AOP, set mode attribute of <global-method-security> element to aspectj. Also, add spring-security-aspects module to your project, and specify @Secured annotations on the class instead of the
interface.

Instead of
using @Secured annotation, you can use Spring’s @PreAuthorize annotation to apply
security constraints on methods. Unlike @Secured annotation, @PreAuthorize
annotation accepts security expressions, like hasRole, hasAnyRole,
and so on. To enable use of @PreAuthorize annotation, set pre-post-annotations attribute of <global-method-security> element to enabled. The following example listing shows usage of @PreAuthorize annotation:

Example listing 14-6 – @PreAuthorize annotation

import
org.springframework.security.access.prepost.PreAuthorize;

.....

public
interface SomeService {

.....

 @PreAuthorize("hasRole('ROLE_XYZ')")

void doSomething(.....);

.....

}

In the
above example listing, @PreAuthorize annotation specifies that the doSomething method is accessible only
to users with role ROLE_XYZ.

Spring
Security also supports security annotations, like @RolesAllowed, @DenyAll, @PermitAll,
and so on, defined by JSR-250 – Common Annotations. To enable use of JSR-250
security annotations, set jsr250-annotations attribute of <global-method-security> to enabled. The following example listing shows usage of @RolesAllowed annotation:

Example listing 14-7 – @RolesAllowed annotation

import
javax.annotation.security.RolesAllowed;

.....

public
interface SomeService {

.....

 @RolesAllowed("ROLE_XYZ")

void doSomething(.....);

.....

}

In the
above example listing, @RolesAllowed annotation specifies that the doSomething method is accessible only
to users with role ROLE_XYZ.

NOTE We saw
earlier in this book that JSR 250 annotations, like @PreDestroy, @PostConstruct, and
so on, are part of Java SE 6 or later. As security related annotations of JSR
250 are not part of Java SE, you need to add jsr250-api JAR file to your project
to use @RolesAllowed, @PermitAll, and so
on, annotations.

In this
section, we looked at how to use Spring Security to authenticate users, secure
web requests and implement method-level security. Let’s now look at Spring
Security’s ACL module for securing domain object instances.

IMPORT chapter
14/ch14-bankapp-db-security (This project represents the MyBank web application that uses Spring
Security’s ACL module for securing FixedDepositDetails instances.)

14-4 MyBank web application - securing FixedDepositDetails instances using
Spring Security’s ACL module

The ch14-bankapp-db-security project represents a variant of MyBank web application that uses
Spring Security’s ACL module to secure FixedDepositDetails instances.

Let’s look
at how to deploy and use ch14-bankapp-db-security project.

Deploying and using ch14-bankapp-db-security
project

The ch14-bankapp-db-security project uses MySQL database to store application users, fixed
deposit details and ACL information. Before deploying the ch14-bankapp-db-security project, create a database named securitydb in MySQL and execute the bankapp.sql
script located in scripts folder of ch14-bankapp-db-security project.

The
execution of bankapp.sql script creates the following tables: ACL_CLASS, ACL_ENTRY, ACL_OBJECT_IDENTITY, ACL_SID, FIXED_DEPOSIT_DETAILS, AUTHORITIES, and USERS. Tables whose names begin with ACL_ store ACL related information
(more on these tables later in this chapter). FIXED_DEPOSIT_DETAILS table contains
fixed deposit details. USERS and AUTHORITIES tables contain user and role information, respectively. The bankapp.sql
script also inserts setup data into USERS, AUTHORITIES, ACL_CLASS and ACL_SID
tables.

Now, that
you have setup the database for ch14-bankapp-db-security project, deploy the project on embedded Tomcat 7 server by
executing the tomcat7:run goal from the project’s directory (refer appendix A for more
information on how to deploy web projects on embedded Tomcat 7 server). Once
the project is successfully deployed, go to http://localhost:8080/ch14-bankapp-db-security URL. You should see the login page, as shown below:

Figure 14-5 – Login page of
MyBank web application

By
default, the following three users are configured for the MyBank web
application: cust1 (ROLE_CUSTOMER role), cust2 (ROLE_CUSTOMER role), and admin (ROLE_ADMIN role). When you login with username cust1 and password as cust1, you’ll
see the fixed deposits associated with cust1 customer, as shown in the
following figure:

Figure 14-6 – List of fixed
deposits associated with customer cust1

As no
fixed deposits are currently associated with cust1, the above figure shows an
empty list of fixed deposits. Clicking the ‘Create new Fixed Deposit’ button
opens the form for creating a new fixed deposit. If you create a new fixed
deposit, it’ll appear in the list of fixed deposits, as shown here:

Figure 14-7 – A customer can edit
fixed deposits or make them accessible to the admin user.

In the
above figure, the ‘Edit’ option allows the customer to edit fixed deposit details, and the
‘Provide access to admin’ option makes the fixed deposit accessible to the admin user. The
admin user can only view fixed deposits that are made accessible by
customers. Click the ‘Provide
access to admin’ hyperlink to make the fixed
deposit accessible to the admin user.

Now,
logout from the MyBank web application, and login using admin username
and admin as password. The admin user can view all the fixed deposits that were made accessible by
customers, as shown here:

Figure 14-8 – The admin user can
close a fixed deposit by selecting the ‘Close’ option

The above
figure shows that the admin user can choose the ‘Close’ option to close the fixed
deposit. Closing a fixed deposit deletes the fixed deposit from the FIXED_DEPOSIT_DETAILS table.

To
summarize, you can login using cust1/cust1, cust2/cust2 and admin/admin credentials to see the following features of the MyBank web
application:

§ only
cust1 (ROLE_CUSTOMER role) and cust2 (ROLE_CUSTOMER role) users can create fixed deposits

§ cust1 and cust2 can only
edit fixed deposits that they own. For instance, cust1 can’t edit a fixed deposit
created by cust2.

§ cust1 and cust2 can only
make the fixed deposits that they own accessible to the admin user.
For instance, cust1 can’t make a fixed deposit created by cust2
accessible to the admin user.

§ admin user (ROLE_ADMIN
role) can only view fixed deposits that are made accessible by cust1 and cust2 users

§ only
the admin user can close fixed deposits

Before
delving into the implementation details of MyBank web application, let’s look
at the standard database tables required by Spring Security to store ACL and
user information.

Database tables to store ACL and user information

Spring
Security’s ACL module provides domain object instance security. MyBank web
application uses Spring Security’s ACL module to secure instances of FixedDepositDetails. Spring Security tables (ACL_CLASS, ACL_ENTRY, ACL_OBJECT_IDENTITY and ACL_SID) contain permissions that apply to fixed deposits stored in the FIXED_DEPOSIT_DETAILS table. When a FixedDepositDetails instance is accessed, Spring Security’s ACL module verifies that
the authenticated user has the necessary permissions to operate on the FixedDepositDetails instance.

Let’s look
at each of the Spring Security tables that are used to store ACL information.

ACL_CLASS
table

ACL_CLASS table contains the
fully-qualified name of domain classes whose instances we want to secure in our
application. In case of MyBank web application, the ACL_CLASS
table contains the fully-qualified name of the FixedDepositDetails class, as shown
here:

Figure 14-9
ACL_CLASS
table

Table column
description

id – contains the primary key

class – fully-qualified name of
the domain class whose instances we want to secure

ACL_SID
table

ACL_SID table (SID means ‘security identity’)
contains the principals (that is, usernames) or authorities (that is, roles) in
the system. In case of MyBank web application, ACL_SID table contains admin, cust1 and cust2
usernames, as shown here:

[image: Figure 14-10 ACL_SID table]

Table column
description

id – contains the primary key

principal – specifies whether the
sid column stores role or username. The value true specifies
that the sid column stores username. The value false specifies that the sid column
stores role.

sid – contains username or role

ACL_OBJECT_IDENTITY
table

ACL_OBJECT_IDENTITY table contains
identities of domain objects that we want to secure. In case of MyBank web
application, the ACL_OBJECT_IDENTITY table contains identities of fixed deposits
stored in FIXED_DEPOSIT_DETAILS table, as shown here:

Figure 14-11
ACL_OBJECT_IDENTITY
table

In the
above figure, the object_id_identity column contains identities of fixed deposits stored in the FIXED_DEPOSIT_DETAILS table.

Table column
description

id – contains the primary key

object_id_class – refers to the
domain class defined in the ACL_CLASS table

object_id_identity – refers to
the domain object instance in the FIXED_DEPOSIT_DETAILS table

parent_object – if a parent
object exists for the domain object referenced by the object_id_identity column, this column refers to the identity of the parent object

owner_sid – refers to the user or
role that owns the domain object instance

entries_inheriting – flag that
indicates whether the object inherits ACL entries from any parent ACL entry or
not

ACL_ENTRY
table

ACL_ENTRY table contains permissions
(read, write, create, and so on) assigned to users on domain objects. In case
of MyBank web application, the ACL_ENTRY table contains permissions
assigned to users on fixed deposits stored in FIXED_DEPOSIT_DETAILS table, as shown
here:

Figure 14-12
ACL_ENTRY
table

In the
above figure, the acl_object_identity, mask and sid columns determine the permissions assigned to a user (or role) on a
domain object instance. You should note that an entry in the ACL_ENTRY
table is commonly referred to as ACE (Access Control Entry).

Table column
description

id – contains the primary key

acl_object_identity – refers to
the id column of the ACL_OBJECT_IDENTITY table, which in turn identifies the domain
object instance

ace_order – specifies the
ordering of the access control entries

sid – refers to the id column of ACL_SID table,
which in turn identifies the user (or role)

mask – specifies the permissions
(read, write, create, and so on) assigned to the user (or role). 1 means read, 2 means write,
8
means delete and 16 means administration permission.

granting – flag that indicates
whether the entry in the mask column identifies as granting access or denying access. For
instance, if the value in the mask column is 1 and granting column is true, it means that the corresponding SID has read access. But, if the
value in the mask column is 1 and granting column is false, it means that the corresponding SID doesn’t have read
access.

audit_success – flag that
indicates whether to audit successful permissions or not. Later in this
chapter, we’ll see that Spring Security’s ConsoleAuditLogger can be used to log
successful permissions.

audit_failure - flag that
indicates whether to audit failed permissions or not. Later in this chapter,
we’ll see that Spring Security’s ConsoleAuditLogger can be used to log
failed permissions.

As explained
so far, the diagram 14-13 depicts relationship between ACL tables. The arrows
in the figure represent foreign key references from a table. For instance, the ACL_OBJECT_IDENTITY table contains foreign keys that refer to ACL_CLASS, ACL_SID and FIXED_DEPOSIT_DETAILS tables.

Figure 14-13 ACL tables and their
relationships. The arrows represent foreign key references from a table.

Now, that
we have seen the ACL tables required to store ACL information, let’s now look
at the Spring Security tables that store users and their roles information.

USERS
table

USERS table stores credentials of
users, as shown here:

Figure 14-14 USERS table

Table column
description

username – username of the user

password – password of the user

enabled – flag that indicates
whether the user is enabled or disabled

AUTHORITIES table

AUTHORITIES table contains the role
assigned to each user defined in the USERS table

Table column
description

username – username of the user

authority – role assigned to the
user

Figure 14-15 AUTHORITIES
table

Let’s now
look at how the users are authenticated in MyBank web application.

User authentication

MyBank web
application explicitly configures the UserDetailsService to load user
details from the USERS and AUTHORITIES database tables, as shown in the following example listing:

Example listing 14-8 – applicationContext-security.xml

Project – ch14-bankapp-db-security

Source location - src/main/resources/META-INF/spring

<authentication-manager>

 <authentication-provider
user-service-ref="userDetailsService" />

</authentication-manager>

<beans:bean
id="userDetailsService"

class="org.springframework.security.core.userdetails.jdbc.JdbcDaoImpl">

 <beans:property
name="dataSource" ref="dataSource" />

</beans:bean>

In the
above example listing, the user-service-ref attribute of <authentication-provider> element refers to an implementation of UserDetailsService that is responsible for loading user (and their authorities) details
based on the supplied username. JdbcDaoImpl is an implementation of UserDetailsService that loads user (and
their authorities) details from the data source (specified by the dataSource
property) using JDBC queries. Refer to the applicationContext.xml file of ch14-bankapp-db-security project to view the dataSource bean definition. By default, JdbcDaoImpl loads user details from the USERS (refer figure 14-14) table and
authorities information from the AUTHORITIES (refer figure 14-15)
table. If you already have custom database tables that contain user and
authorities details, then set the usersByUsernameQuery and authoritiesByUsernameQuery properties of JdbcDaoImpl to retrieve user details and their authorities from these custom
tables.

The usersByUsernameQuery property specifies the SQL query to retrieve user details based on
the given username. If user details are stored in a table named MY_USERS that
contains USERNAME and PASSWORD columns, you can set the following SQL query as the value of usersByUsernameQuery property to retrieve user details:

select USERNAME, PASSWORD, ‘true’ as ENABLED from
MY_USERS where USERNAME = ?

You should
note that the columns returned by the SQL query must be USERNAME, PASSWORD and ENABLED. If a
particular column (like, ENABLED) doesn’t exist in your database table, then return a default value
(like, ‘true’) for that column.

The authoritiesByUsernameQuery property specifies the SQL query to retrieve authorities based on
the given username. If authority details are stored in a table named MY_ AUTHORITIES that
contains USER and ROLE
columns, you can set the following SQL query as the
value of authoritiesByUsernameQuery property to retrieve authorities:

select USER AS USERNAME, ROLE AS AUTHORITY from
MY_AUTHORITIES where USER = ?

You should
note that the columns returned by the SQL query must be USERNAME and AUTHORITY.

If your
application stores encoded passwords in the database, you can use the <password-encoder> sub-element of <authentication-provider> element to specify the password encoder (an implementation of
Spring’s PasswordEncoder interface) to be used to convert the submitted passwords into their
encoded form. BCryptPasswordEncoder is a concrete implementation of PasswordEncoder that uses BCrypt
hashing algorithm (http://en.wikipedia.org/wiki/Bcrypt). The DaoAuthenticationProvider uses the configured password encoder to encode the submitted
password and compare it with the password loaded by the UserDetailsService.

Let’s now
look at the web request security configuration in the MyBank web application.

Web request security

The
following example listing shows how web request security is configured for the
MyBank web application:

Example listing 14-9 – applicationContext-security.xml – web security configuration

Project – ch14-bankapp-db-security

Source location - src/main/resources/META-INF/spring

<http
use-expressions="true">

 <access-denied-handler
error-page="/access-denied" />

<intercept-url pattern="/fixedDeposit/*"

access="hasAnyRole('ROLE_CUSTOMER', 'ROLE_ADMIN')" />

<form-login login-page="/login"
authentication-failure-handler-ref="authFailureHandler" />

<logout />

....

</http>

<beans:bean id="authFailureHandler"

 class="sample.spring.chapter14.security.MyAuthFailureHandler"
/>

If you compare the web request security configuration shown above with the one we saw in ch14-bankapp-simple-security project
(refer example listing 14-2), you’ll notice that we have added some additional
configuration information.

The <access-denied-handler> element’s error-page attribute specifies the error page (refer to scr/main/webapp/WEB-INF/jsp/access-denied.jsp page) to which an authenticated user is redirected in case the user
attempts to access an unauthorized web page. The <form-login> element’s login-page
attribute specifies the URL that renders the login page. The value /login URL is
mapped to LoginController (refer to LoginController
class of ch14-bankapp-db-security project)
that renders the login page (refer
to scr/main/webapp/WEB-INF/jsp/login.jsp page). The authentication-failure-handler-ref attribute refers to an AuthenticationFailureHandler bean that handles authentication failures. As the above example
listing shows, MyAuthFailureHandler (an implementation of AuthenticationFailureHandler) is
responsible for handling authentication failures in MyBank web application. The
following example listing shows the implementation of MyAuthFailureHandler class:

Example listing 14-10 – MyAuthFailureHandler class

Project – ch14-bankapp-db-security

Source location - src/main/java/sample/spring/chatper14/security

package
sample.spring.chapter14.security;

.....

import
org.springframework.security.core.AuthenticationException;

import
org.springframework.security.web.authentication.AuthenticationFailureHandler;

public
class MyAuthFailureHandler implements AuthenticationFailureHandler {

@Override

public void onAuthenticationFailure(HttpServletRequest request,

HttpServletResponse response, AuthenticationException exception)

throws IOException, ServletException {

request.setAttribute("exceptionMsg", exception.getMessage());

response.sendRedirect(request.getContextPath() + "/login?exceptionMsg="
+

 exception.getMessage());

}

}

AuthenticationFailureHandler
interface defines an onAuthenticationFailure method which is invoked when authentication fails. The onAuthenticationFailure method accepts an instance of AuthenticationException that represents an authentication failure. In the above example
listing, the onAuthenticationFailure method redirects the user to the login page and passes the
exception message as a query string parameter. If you enter wrong credentials
(or enter credentials of a user who is disabled in the system) on the login
page of MyBank web application, you’ll notice that the MyAuthFailureHandler’s onAuthenticationFailure method is invoked. For instance, if you enter wrong credentials,
you’ll see the message ‘Bad
credentials’.

Let’s now
look at ACL-specific configuration in MyBank web application.

JdbcMutableAclService configuration

As ACL permissions
are stored in database tables, the MyBank web application uses Spring’s JdbcMutableAclService to perform CRUD (Create Read Update Delete)
operations on ACLs in the tables. The following example listing shows the
configuration of JdbcMutableAclService:

Example listing 14-11 – applicationContext-security.xml –
JdbcMutableAclService configuration

Project – ch14-bankapp-db-security

Source location - src/main/resources/META-INF/spring

<beans:bean
id="aclService" class="org.springframework.security.acls.jdbc.JdbcMutableAclService">

<beans:constructor-arg ref="dataSource" />

<beans:constructor-arg ref="lookupStrategy" />

<beans:constructor-arg ref="aclCache" />

</beans:bean>

The above
example listing shows references to dataSource, lookupStrategy
and aclCache beans are passed to the JdbcMutableAclService’s constructor.
Let’s now look at how dependencies (dataSource, lookupStrategy
and aclCache) of JdbcMutableAclService are configured.

The dataSource
bean identifies the javax.sql.DataSource that holds the ACL tables (refer to the dataSource
bean definition in the applicationContext.xml file for more details).

The lookupStrategy
bean represents an implementation of Spring’s LookupStrategy interface that is
responsible for looking up ACL information. The following example listing shows
the lookupStrategy bean definition:

Example listing 14-12 – applicationContext-security.xml –
LookupStrategy configuration

Project – ch14-bankapp-db-security

Source location - src/main/resources/META-INF/spring

<beans:bean
id="lookupStrategy"

 class="org.springframework.security.acls.jdbc.BasicLookupStrategy">

<beans:constructor-arg ref="dataSource" />

<beans:constructor-arg ref="aclCache" />

<beans:constructor-arg>

<beans:bean class="org.springframework.security.acls.domain.AclAuthorizationStrategyImpl">

<beans:constructor-arg>

<beans:bean

class="org.springframework.security.core.authority.SimpleGrantedAuthority">

<beans:constructor-arg value="ROLE_ADMIN" />

</beans:bean>

</beans:constructor-arg>

</beans:bean>

</beans:constructor-arg>

 <beans:constructor-arg>

<beans:bean

class="org.springframework.security.acls.domain.DefaultPermissionGrantingStrategy">

<beans:constructor-arg>

<beans:bean class="org.springframework.security.acls.domain.ConsoleAuditLogger"
/>

</beans:constructor-arg>

</beans:bean>

</beans:constructor-arg>

</beans:bean>

In the
above example listing, Spring’s BasicLookupStrategy (an implementation of LookupStrategy interface) uses JDBC queries to fetch ACL
details from standard ACL tables (ACL_CLASS, ACL_ENTRY, ACL_SID and ACL_OBJECT_IDENTITY). If the ACL information is stored in custom database tables, then
you can customize the JDBC queries by setting selectClause, lookupPrimaryKeysWhereClause, lookupObjectIdentitiesWhereClause and orderByClause properties of BasicLookupStrategy. For more details on these properties, please refer to the API
documentation of Spring Security.

BasicLookupStrategy’s constructor accepts arguments of
type DataSource
(represents the database that contains the ACL tables), AclCache (represents the ACL caching layer), AclAuthorizationStrategy (represents the strategy to determine if a SID has the permissions to perform administrative actions on the ACL entries of a domain object instance), and PermissionGrantingStrategy (strategy to grant or deny access to secured objects depending on the permissions assigned to SIDs).

In the above example
listing, the AclAuthorizationStrategyImpl
class implements AclAuthorizationStrategy.
The AclAuthorizationStrategyImpl’s
constructor accepts an instance of GrantedAuthority
that specifies the role that can perform administrative actions (like, changing
ownership of an ACL entry) on the ACL entries (represented by an object of type
MutableAcl) of a domain object instance. In the above example listing, ROLE_ADMIN role is passed to
the AclAuthorizationStrategyImpl, which means that a user with ROLE_ADMIN role can perform
administrative actions on ACL entries. Later in this chapter, we’ll see that
the AclAuthorizationStrategy secures the MutableAcl instance from unauthorized modification.

In the
above example listing, the DefaultPermissionGrantingStrategy implements PermissionGrantingStrategy. The DefaultPermissionGrantingStrategy’s constructor accepts an instance of AuditLogger that logs success and/or
failure in granting permissions for an ACL entry in the ACL_ENTRY
table. In the above example listing, the ConsoleAuditLogger (an implementation of AuditLogger that writes on the console) logs successful permissions if audit_success
column’s value is set to true (that is, 1), and logs failed permissions if audit_failure column’s value is set
to true (that is, 1). For instance, the following message shows output from the ConsoleAuditLogger on successful permission to an ACL entry:

GRANTED
due to ACE: AccessControlEntryImpl[id: 1037; granting: true; sid:
PrincipalSid[cust1]; permission:
BasePermission[...............................R=1]; auditSuccess: true;
auditFailure: true]

BasicLookupStrategy accepts an
instance of AclCache object (represented by the aclCache bean in example listing
14-12) that represents a cache for ACLs. The following example listing shows
the aclCache bean definition that is used by BasicLookupStrategy to cache ACLs:

Example listing 14-13 – applicationContext-security.xml – Cache configuration

Project – ch14-bankapp-db-security

Source location - src/main/resources/META-INF/spring

<beans:bean
id="aclCache" class="org.springframework.security.acls.domain.EhCacheBasedAclCache">

<beans:constructor-arg>

<beans:bean class="org.springframework.cache.ehcache.EhCacheFactoryBean">

<beans:property name="cacheManager">

 <beans:bean class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean"
/>

</beans:property>

<beans:property name="cacheName" value="aclCache"
/>

</beans:bean>

</beans:constructor-arg>

</beans:bean>

EhCacheBasedAclCache is an implementation of AclCache that uses EhCache (http://ehcache.org/) for caching ACLs. EhCacheFactoryBean is Spring FactoryBean that creates an instance of net.sf.ehcache.EhCache. The cacheManager
property of EhCacheFactoryBean specifies the net.sf.ehcache.CacheManager instance that is responsible for managing the cache. In the above
example listing, EhCacheManagerFactoryBean is a Spring FactoryBean that creates an instance of net.sf.ehcache.CacheManager. The EhCacheFactoryBean’s cacheName property refers to the cache region to be created in EhCache for
storing ACLs.

Now, that
we have configured JdbcMutableAclService to perform CRUD operations on ACLs, let’s look at the method-level
security configuration that uses ACLs loaded by JdbcMutableAclService for
authorization purposes.

Method-level security configuration

The
following example listing shows method-level security configuration in the
MyBank web application:

Example listing 14-14 – applicationContext-security.xml – Method-level security configuration

Project – ch14-bankapp-db-security

Source location - src/main/resources/META-INF/spring

<global-method-security
pre-post-annotations="enabled">

 <expression-handler
ref="expressionHandler" />

</global-method-security>

The <global-method-security> element’s pre-post-annotations attribute value is set to enabled, which enables use of @PreAuthorize
(explained earlier in this chapter), @PostAuthorize, @PostFilter
and @PostAuthorize annotations. In the above example listing, the <expression-handler> element refers to the expressionHandler bean that
configures a SecurityExpressionHandler instance.

A SecurityExpressionHandler is used by
Spring Security to evaluate security expressions, like hasRole, hasAnyRole, hasPermission,
and so on. The following example listing shows the expressionHandler bean definition that configures a DefaultMethodSecurityExpressionHandler (a SecurityExpressionHandler implementation) instance:

Example listing 14-15 – applicationContext-security.xml – SecurityExpressionHandler configuration

Project – ch14-bankapp-db-security

Source location - src/main/resources/META-INF/spring

<beans:bean
id="expressionHandler" class="org.springframework.security.access.expression.method.

DefaultMethodSecurityExpressionHandler">

<beans:property name="permissionEvaluator" ref="permissionEvaluator"
/>

<beans:property name="permissionCacheOptimizer">

<beans:bean class="org.springframework.security.acls.AclPermissionCacheOptimizer">

<beans:constructor-arg ref="aclService" />

</beans:bean>

</beans:property>

</beans:bean>

<beans:bean
id="permissionEvaluator"

class="org.springframework.security.acls.AclPermissionEvaluator">

<beans:constructor-arg ref="aclService" />

</beans:bean>

In the
above example listing, the permissionEvaluator property refers to an instance of AclPermissionEvaluator instance that uses ACLs to evaluate security expressions. The permissionCacheOptimzer property refers to an instance of AclPermissionCacheOptimizer that loads ACLs in batches to optimize performance.

Let’s now
look at how domain object instance security is achieved in the MyBank web
application.

Domain object instance security

We saw
earlier that the @PreAuthorize annotation specifies role-based security constraints on the
methods. If a @PreAuthorize annotated method accepts a domain object instance as an argument,
the @PreAuthorize annotation can specify the ACL permissions that the authenticated
user must have on the domain object instance to invoke the method. The
following example listing shows the @PreAuthorize annotation that
specifies ACL permissions:

Example listing 14-16 – FixedDepositService interface – @PreAuthorize annotation with ACL permissions

Project – ch14-bankapp-db-security

Source location - src/main/java/sample/spring/chatper14/service

package
sample.spring.chapter14.service;

import
org.springframework.security.access.prepost.PreAuthorize;

import
sample.spring.chapter14.domain.FixedDepositDetails;

.....

public
interface FixedDepositService {

.....

 @PreAuthorize("hasPermission(#fixedDepositDetails,
write)")

void editFixedDeposit(FixedDepositDetails fixedDepositDetails);

}

In the
above example listing, the FixedDepositService’s editFixedDeposit method accepts an instance of FixedDepositDetails. In the hasPermission
expression, #fixedDepositDetails represents an expression variable that refers to the FixedDepositDetails instance passed to the editFixedDeposit method. The hasPermission
expression evaluates to true if the authenticated user has write permission on the FixedDepositDetails instance passed to the editFixedDeposit method. At runtime,
the hasPermission expression is evaluated by the configured AclPermissionEvaluator (refer example listing 14-15). If the hasPermission
evaluates to true, the editFixedDeposit method is invoked.

If a
method accepts a domain object identifier (instead of the actual domain
object instance) as an argument, you can still specify ACL permissions that
apply to the domain object instance referred by the identifier. The following
example listing shows the provideAccessToAdmin method that accepts fixedDepositId (which uniquely identifies a FixedDepositDetails instance) as
argument:

Example listing 14-17 – FixedDepositService interface – @PreAuthorize annotation usage

Project – ch14-bankapp-db-security

Source location - src/main/java/sample/spring/chatper14/service

package
sample.spring.chapter14.service;

import
org.springframework.security.access.prepost.PreAuthorize;

.....

public
interface FixedDepositService {

.....

 @PreAuthorize("hasPermission(#fixedDepositId,

'sample.spring.chapter14.domain.FixedDepositDetails', write)")

void provideAccessToAdmin(int fixedDepositId);

}

In the
above example listing, #fixedDepositId expression variable refers to the fixedDepositId argument passed to the
provideAccessToAdmin method. As the fixedDepositId argument identifies an instance of FixedDepositDetails object, the
fully-qualified name of the FixedDepositDetails class is specified as the second argument of hasPermission
expression. The hasPermission(#fixedDepositId,
‘sample.spring.chapter14.domain.FixedDepositDetails’, write) evaluates to true if the
authenticated user has write permission on the FixedDepositDetails instance identified by the fixedDepositId argument passed to the
provideAccessToAdmin method.

It is also
possible to combine multiple security expressions to form a more complex
security expression, as shown in the following example listing:

Example listing 14-18 – FixedDepositService interface – @PreAuthorize annotation usage

Project – ch14-bankapp-db-security

Source location - src/main/java/sample/spring/chatper14/service

package
sample.spring.chapter14.service;

import
org.springframework.security.access.prepost.PreAuthorize;

.....

public
interface FixedDepositService {

.....

 @PreAuthorize("hasPermission(#fixedDepositId,

'sample.spring.chapter14.domain.FixedDepositDetails', read) or "

+ "hasPermission(#fixedDepositId,

'sample.spring.chapter14.domain.FixedDepositDetails', admin)")

FixedDepositDetails getFixedDeposit(int fixedDepositId);

.....

}

In the
above example listing, the two hasPermission expressions have been combined using or operator to form a more
sophisticated security expression. The getFixedDeposit method will be
invoked only if the authenticated user has read or admin
permission on the FixedDepositDetails instance identified by the fixedDepositId argument.

If a
method returns a list of domain object instances, you can filter the results by
using @PostFilter annotation. The following example listing shows usage of @PostFilter
annotation:

Example listing 14-19 – FixedDepositService interface – @PostFilter annotation usage

Project – ch14-bankapp-db-security

Source location - src/main/java/sample/spring/chatper14/service

package
sample.spring.chapter14.service;

import
org.springframework.security.access.prepost.PostFilter;

.....

public
interface FixedDepositService {

.....

 @PreAuthorize("hasRole('ROLE_ADMIN')")

 @PostFilter("hasPermission(filterObject,
read) or hasPermission(filterObject, admin)")

List<FixedDepositDetails> getAllFixedDeposits();

.....

}

Like @PreAuthorize
annotation, @PostFilter specifies a security expression. If a method is annotated with @PostFilter
annotation, Spring Security iterates over the collection returned by the method
and removes the elements for which the specified security expression returns false. In the
above example listing, Spring Security iterates over the collection of FixedDepositDetails instances returned by the getAllFixedDeposits method and
removes the instances for which the authenticated user doesn’t have read or admin
permission. The term filterObject in the hasPermission expression of @PostFilter annotation refers to the current object in the collection. Notice
that the getAllFixedDeposits method is also annotated with @PreAuthorize annotation, which
indicates that the getAllFixedDeposits method is only invoked if the authenticated user has ROLE_ADMIN
role.

We saw
earlier that a customer (ROLE_CUSTOMER role) makes a fixed deposit available to the admin user (ROLE_ADMIN
role) by clicking the ‘Provide
access to admin’ hyperlink (refer figure 14-7).
When the customer clicks the ‘Provide
access to admin’, application grants read, admin and delete
permissions on the fixed deposit to the admin user. We’ll see later in this
chapter how this is done programmatically. The FixedDepositService’s getAllFixedDeposits method is invoked when a user with ROLE_ADMIN role visits the web page
that shows lists of fixed deposits (refer figure 14-8). As the admin user
should only be able to see fixed deposits for which customers have granted
permissions, the getAllFixedDeposits method is annotated with @PostFilter annotation to remove
fixed deposits on which the admin user doesn’t have read or admin permission.

Let’s now
look at how to programmatically manage ACL entries.

Managing ACL entries programmatically

You can
manage ACL entries programmatically by using the JdbcMutableAclService that was
configured in the application context XML file (refer example listing 14-11).

When a
customer creates a new fixed deposit, read and write
permissions on the newly created fixed deposit are granted to the customer.
When a customer clicks the ‘Provide
access to admin’ hyperlink corresponding to a fixed deposit, the
MyBank web application grants read,
admin and delete permissions on the fixed
deposit to the admin user.

The following example
listing shows the FixedDepositServiceImpl’s
provideAccessToAdmin
method that is invoked when the ‘Provide
access to admin’ hyperlink is clicked:

Example listing 14-20 – FixedDepositServiceImpl class – adding ACL permissions

Project – ch14-bankapp-db-security

Source location - src/main/java/sample/spring/chatper14/service

package
sample.spring.chapter14.service;

import
org.springframework.security.acls.domain.*;

import
org.springframework.security.acls.model.*;

.....

@Service

public
class FixedDepositServiceImpl implements FixedDepositService {

.....

@Autowired

 private
MutableAclService mutableAclService;

@Override

 public
void provideAccessToAdmin(int fixedDepositId) {

addPermission(fixedDepositId, new PrincipalSid("admin"), BasePermission.READ);

addPermission(fixedDepositId, new PrincipalSid("admin"), BasePermission.ADMINISTRATION);

addPermission(fixedDepositId, new PrincipalSid("admin"), BasePermission.DELETE);

}

private void addPermission(long fixedDepositId, Sid recipient, Permission
permission) { }

}

In the
above example listing, the provideAccessToAdmin method uses the addPermission method to grant read, admin and delete permissions to the admin user. The following arguments are passed to the addPermission
method:

§ fixedDepositId
– uniquely identifies the FixedDepositDetails instance on whom we want to grant permissions

§ PrincipalSid object - represents the SID (that is, the user or role) whom we
want to grant permissions. The PrincipalSid class implements Spring Security’s Sid interface.

§ permission
to grant – The BasePermission class defines constants, like READ, ADMINISTRATION, DELETE, and so
on, representing standard permissions that we can grant to PrincipalSid.
The BasePermission class implements Spring Security’s Permission interface.

The
following example listing shows the implementation of addPermission
method:

Example listing 14-21 – FixedDepositServiceImpl class – adding ACL permissions

Project – ch14-bankapp-db-security

Source location - src/main/java/sample/spring/chatper14/service

package
sample.spring.chapter14.service;

import
org.springframework.security.acls.domain.*;

import
org.springframework.security.acls.model.*;

.....

@Service

public
class FixedDepositServiceImpl implements FixedDepositService {

.....

@Autowired

 private
MutableAclService mutableAclService;

.....

private void addPermission(long fixedDepositId, Sid recipient, Permission
permission) {

MutableAcl acl;

ObjectIdentity oid = new ObjectIdentityImpl(FixedDepositDetails.class,
fixedDepositId);

try {

acl = (MutableAcl) mutableAclService.readAclById(oid);

} catch (NotFoundException nfe) {

acl = mutableAclService.createAcl(oid);

 }

acl.insertAce(acl.getEntries().size(), permission, recipient, true);

mutableAclService.updateAcl(acl);

}

.....

}

As JdbcMutableAclService class implements MutableAclService interface, JdbcMutableAclService instance is autowired into the FixedDepositServiceImpl class.

To grant
permissions, the addPermission method follows these steps:

1)
declares an object of type MutableAcl. A MutableAcl object represents ACL entries of a domain object instance. MutableAcl
defines methods that you can use to modify ACL entries.

2)
creates an instance of ObjectIdentityImpl by passing domain object type (which is FixedDepositDetails.class) and identity (which is fixedDepositId) as arguments to the
constructor

3)
retrieves the ACL entries for the domain object
instance by calling MutableAclService’s readAclById method. If no ACL entries are found, the readAclById
method throws NotFoundException.

o If NotFoundException is thrown, MutableAclService’s createAcl method is used to create an empty instance of MutableAcl
that doesn’t contain any ACL entries. This is equivalent to creating an entry
in the ACL_OBJECT_IDENTITY table (refer figure 14-11).

4)
adds ACL entries to the MutableAcl
instance using insertAce method. The ACL entries added to MutableAcl are eventually persisted
into the ACL_ENTRY table (refer figure 14-12). The arguments passed to the insertAce
method are - the index location where the ACL entry is to be added (corresponds
to the ACE_ORDER column), the permission to be added (corresponds to the MASK column),
the SID for whom the permission is to be added (corresponds to the SID column),
and the flag indicating that the ACL entry is for granting or denying permission
(corresponds to the GRANTING column).

5)
persists changes made to the MutableAcl
instance using MutableAclService’s updateAcl method.

The
following example listing shows FixedDepositServiceImpl’s closeFixedDeposit method that is invoked when the admin user clicks the ‘Close’
hyperlink to close a fixed deposit (refer figure 14-8):

Example listing 14-22 – FixedDepositServiceImpl class – removing ACLs

Project – ch14-bankapp-db-security

Source location - src/main/java/sample/spring/chatper14/service

package
sample.spring.chapter14.service;

import
org.springframework.security.acls.domain.ObjectIdentityImpl;

import
org.springframework.security.acls.model.MutableAclService;

import
org.springframework.security.acls.model.ObjectIdentity;

.....

@Service

public
class FixedDepositServiceImpl implements FixedDepositService {

.....

@Autowired

private MutableAclService mutableAclService;

.....

@Override

public void closeFixedDeposit(int fixedDepositId) {

fixedDepositDao.closeFixedDeposit(fixedDepositId);

ObjectIdentity oid = new ObjectIdentityImpl(FixedDepositDetails.class,
fixedDepositId);

mutableAclService.deleteAcl(oid, false);

}

.....

}

In the
above example listing, MutableAclService’s
deleteAcl method is used
to delete ACL entries of the fixed deposit identified by the ObjectIdentity instance. For
instance, if the fixedDepositId
is 101, deleteAcl method deletes all
ACL entries of fixed deposit 101
from ACL_ENTRY (refer
figure 14-12) and ACL_OBJECT_IDENTITY
(refer figure 14-11) tables.

Let’s now look at how MutableAcl instance is secured
from unauthorized modifications.

MutableAcl and
security

Spring Security’s MutableAcl interface defines
methods for modifying ACL entries of a domain object instance. We saw that the
MyBank web application uses MutableAcl’s
insertAce method to add an
ACL entry for a domain object instance (refer example listing 14-21). The AclAuthorizationStrategyImpl instance that we supplied to the BasicLookupStrategy (refer
example listing 14-12) is used behind the scenes to ensure that the
authenticated user has appropriate permissions to modify ACL entries.

An authenticated user can
modify ACL entries of a domain object instance if at least one of the following
conditions is true:

§ if the authenticated
user owns the domain object instance, the user can modify the ACL entries of
that domain object instance

§ if the authenticated
user holds the authority that was passed to AclAuthorizationStrategyImpl’s
constructor. In example listing 14-12, the ROLE_ADMIN role was passed to AclAuthorizationStrategyImpl’s constructor; therefore, a user with ROLE_ADMIN
role can make changes to ACL entries of any domain object instance.

§ if
the authenticated user has BasePermission’s ADMINISTRATION permission on the domain object instance.

14-5 Summary

In this chapter, we looked
at how to use Spring Security framework to secure Spring applications. We
looked at how to incorporate web request security, method-level security, and
domain object instance security.

Appendix A – Importing and deploying sample
projects in Eclipse IDE (or IntelliJ IDEA)

In this
appendix, we’ll look at how to setup the development environment, import a
sample project into Eclipse IDE (or IntelliJ IDEA), and run it as a standalone
application (if the sample project represents a standalone Java application) or
deploy it on Tomcat 7 server (if the sample project represents a web
application).

A-1 Setting up the development
environment

Before
setting up the development environment, you need to do the following:

·
Download and install
Eclipse IDE (or IntelliJ IDEA) – You can download the Eclipse IDE for Java EE Developers from http://www.eclipse.org/downloads.
To install Eclipse IDE, all you need to do is to unzip the downloaded ZIP file
into a directory.

·
Download and install
Tomcat 7 server
– You can download the Tomcat 7 server from http://tomcat.apache.org/download-70.cgi.
It is recommended that you download the Tomcat 7 bundled as ZIP file, and unzip
the bundle into your local file system.

·
Download and install
Maven 3 build tool – You can download Maven 3 from http://maven.apache.org/download.cgi.
To install Maven, all you need to do is to unzip the downloaded ZIP file into a
directory. Maven is used for converting the sample web projects that accompany
this book into Eclipse IDE or IntelliJ IDEA projects.

Let’s look at how to import a sample project into Eclipse IDE.

A-2 Importing a sample project into
Eclipse IDE (or IntelliJ IDEA)

It is
recommended that you download the sample projects that accompany this book from
the following Google code project:

https://code.google.com/p/getting-started-with-spring-framework-2edition/

The rest
of this section assumes that you have created a spring-samples directory in your
local file system that contains all the sample projects that accompany this
book.

To
successfully import a sample project, you need to do the following:

§
Convert the project into an Eclipse IDE or
IntelliJ IDEA project

§
Configure an M2_REPO classpath variable in the Eclipse IDE (or IntelliJ IDEA). M2_REPO
variable points to the local maven repository that contains the JAR files on which the project depends.

Let’s now
look at the above mentioned steps in detail.

Importing a sample project

Each
sample project contains a pom.xml file that contains configuration of Eclipse, IntelliJ IDEA and
Tomcat maven plugins. These plugins are used by maven for converting a sample
project into Eclipse IDE or IntelliJ IDEA project, and for deploying the
project on an embedded Tomcat 7 instance. You should note that the Tomcat Maven plugin (http://tomcat.apache.org/maven-plugin.html) is configured only for sample projects that represent web applications. The pom.xml file also specifies the JAR files (like spring-core, spring-beans,
and so on) on which the project depends.

To create
Eclipse IDE or IntelliJ IDEA specific configuration files for the sample
project, follow these steps:

§ Open
the command prompt and set JAVA_HOME environment variable to point to Java SDK installation directory:

C:\> set
JAVA_HOME=C:\Program Files\Java\jdk1.7.0_25

§ Go
to the directory containing the sample project:

C:\> cd spring-samples

C:\spring-samples> cd ch01-bankapp-xml

C:\spring-samples\ch01-bankapp-xml>

§ Add path of the bin directory of your maven installation to the PATH environment
variable:

C:\spring-samples\ch01-bankapp-xml> set
path=%path%; C:\apache-maven-3.0.4\bin

§ If you want to import the sample
project into Eclipse IDE, execute the eclipse:eclipse goal of Maven Eclipse Plugin
(http://maven.apache.org/plugins/maven-eclipse-plugin/):

C:\spring-samples\ch01-bankapp-xml>mvn
eclipse:eclipse

Executing the eclipse:eclipse goal downloads dependencies of the sample project and creates
configuration files (like .classpath and .project) for Eclipse IDE.

OR

§ If you want to import the sample project
into IntelliJ IDEA, execute the idea:idea goal of Maven IDEA Plugin
(http://maven.apache.org/plugins/maven-idea-plugin/):

C:\spring-web-mvc-samples\ch01-xml-config>mvn
idea:idea

Executing the idea:idea
goal downloads dependencies of the sample
project and creates configuration files (like .ipr, .iml and .iws) for
IntelliJ IDEA.

NOTE
A pom.xml file is also provided at the root of the source code distribution, which builds
all the projects. You can go to spring-samples directory and execute the mvn eclipse:eclipse (or mvn idea:idea) command to convert all the projects into Eclipse IDE (or
IntelliJ IDEA) projects.

Now,
import the sample project into Eclipse IDE by following these steps:

§ Go to File à Import option.

§ Select the General à Existing Projects into Workspace option from the dialog box, and click Next.

§ Select the sample project (ex.
ch01-bankapp-xml) directory
from the file system, and click Finish.

Configuring the M2_REPO classpath variable
in the Eclipse IDE

When you
execute the eclipse:eclipse or idea:idea
goal, dependencies of the project are downloaded
into the <home-directory>/.m2/repository directory. Here, <home-directory>
is the home directory of the user. On Windows,
this refers to C:\Documents and
Settings\myusername\.m2\repository directory. By
default, .classpath file created by execution of eclipse:eclipse goal refers to the
JAR dependencies of the project using M2_REPO classpath variable. For this
reason, you need to configure a new M2_REPO classpath variable in Eclipse
IDE that refers to <home-directory>/.m2/repository directory.

To
configure a new M2_REPO variable, follow these steps:

§
Go to Windows à Preferences
option. This will show the Preferences dialog box.

§
Select the Java à Build Path à Classpath Variables option in the dialog box to view the configured classpath
variables.

§
Now, click New button to configure a new M2_REPO
classpath variable. It is important to note that you set the M2_REPO
classpath variable to <home-directory>/.m2/repository directory.

We have
now successfully imported the sample project into the Eclipse IDE and set the M2_REPO
classpath variable. If the project represents a standalone application, you can
run the application by following these steps:

§
In Eclipse IDE’s Project Explorer tab, right-click on
the Java class that contains the main method of the application.
You’ll now see the list of actions that can be performed on the selected Java
class.

§
Select Run As à Java Application option. This will execute the main method of the Java class.

Let’s now look
at how Eclipse IDE is configured to work with Tomcat 7 server.

A-3 Configuring Eclipse IDE with Tomcat 7
server

You need
to open Eclipse IDE’s Servers view to configure Eclipse IDE with Tomat 7 server. To open the Servers view,
select Window à Show View à Servers option from the Eclipse IDE’s menu bar.
To configure a server with Eclipse IDE, first go to the Servers view, right-click
in the Servers views, and select New
à Server option. You’ll now see a New Server wizard which allows you to
configure a server with Eclipse IDE in a step-by-step fashion. The first step
is ‘Define a New Server’, wherein you need to choose the type and
version of the server with which you want to configure your Eclipse IDE.
The following figure shows the ‘Define
a New Server’ step:

Figure A-1 Select the Tomcat server version that you
want to use with Eclipse IDE

Select Apache à Tomcat v7.0 Server as the server, and set ‘Tomcat v7.0’ as the server name. Click the Next button to
go to the next step of configuring Tomcat 7 server with Eclipse IDE. The next
step is to specify installation directory of Tomcat 7 server, as shown in
figure A-2.

Figure A-2 Specify Tomcat server
installation directory and set the Java SDK to be used by the server.

To set the
Tomcat installation directory, click the Browse button (refer figure A-2) and
select the directory in which you unzipped the Tomcat ZIP file. Also, click the
Installed JREs button and configure the Java SDK to be used by Eclipse IDE for running
the Tomcat server. Click the Finish button to complete configuration of Tomcat 7 server with Eclipse
IDE. You’ll now be able to see the newly configured Tomcat 7 server in the Servers view,
as shown in the following figure:

Figure A-3 The Servers view
shows the newly configured Tomcat 7 server

Now, that
we have configured Tomcat 7 server, let’s look at how to deploy a sample web
project to the configured Tomcat 7 server.

A-4 Deploying a web project on Tomcat 7
server

To deploy
a web project (ex. ch10-helloworld) on Tomcat 7 server, follow these steps:

§
Right-click on the sample web project in Eclipse
IDE’s Project Explorer tab. You’ll now see the list of actions that can be performed on
the selected web
project.

§
If you want to simply deploy the web project,
select Run As à Run on Server option. This will deploy the web project
on the Tomcat 7 server that we configured in section A-3.

OR

§
If you want to deploy and debug the web
project, then select Debug As à Debug on Server option. This will deploy the web project on the Tomcat 7
that we configured in section A-3, and allow you to debug the web project
by setting breakpoints in the Eclipse IDE.

If Tomcat
7 server is configured correctly with Eclipse IDE, you’ll notice that Tomcat 7
server is started and the web project is deployed on it. If you now open a web
browser and go to http://localhost:8080/<sample-project-folder-name>, you’ll see the home page of the web project. Here, <sample-project-folder-name> refers to the name of the folder of the sample project.

Running the Tomcat 7 server in embedded
mode

A simpler
way to deploy and run a sample web project is to use an embedded Tomcat 7 server. In all the sample web
projects, Maven
Tomcat plugin (http://tomcat.apache.org/maven-plugin-2.0/) is configured in the pom.xml file. If you execute tomcat7:run
goal of Maven
Tomcat plugin by going to sample project’s directory, the
plugin takes care of downloading and starting Tomcat 7 in embedded mode and
automatically deploying the sample web project on the embedded Tomcat 7
instance. To stop the server, all you need to do is to press Ctrl-C.

cover.jpeg
GETTING STARTED
WITH SPRING
FRAMEWORK

Second Edition

ASHISH SARIN
J SHARMA

images/00011.jpeg
|
getBean(“controller”) |

SingletonTest

>
getBean(“controller”)

Spring container

Bean name

FixedDepositControllerimpl

v N,

| Beantype

images/00010.jpeg
<<interface>>
FixedDepositController

dDepositControllerimp!

<<interface>>
FixedDepositService

7S

FixedDepositServicelmpl

<cinterface>>
FixedDepositDao

FixedDepositibatisDao

FixedDepositJdbcDao | | FixedDepositHibernateDao

images/00013.jpeg
Spring container (context)
getBean(“controller”) |

i
!
N w
* FixedDepositControllerimpl _ | DI GOREOREE
(1 \I\ms\ances because the
cope is limited to the
Spring loC container

images/00012.jpeg
Spring container

. controller

i
i
T FixedDepositControllerimpl
| .
|
|
>
|
|
|
|
|
|
|

FixedDepositDaolmpl referenced
by FixedDepositControllerimpl

S EEE <property name="fixedDepositService" ref="service[/>

|
|
|
|
|
|

geBean(aacr) |\ TN
% FixedDepositServicelmpl |

"dao'f />
|
| o] !

FixedDepositDaolmpl |

<property name="fixedDépositDao" ¢

images/00015.jpeg
Application

| create = :
Spring container

d
1

i
| getBean("lazyBean") | !
—_—

| create !
L
h

| <<singleton>>
I

1 1

I

i

LazyBean
i

! I

d

images/00014.jpeg
getBean(‘dac’)

X

FixedDepositDaolmpl

|
>
|
SingletonTest |
|
»
getBean(‘anotherDao’) |

images/00002.jpeg
Spring container uses Java Reflection
API to create application objects and
inject their dependencies.

Application

L Spring container — creates

Configuration metadata
specified via XML,
annotations or Java code

Application objects

images/00001.jpeg
Test

Data Access/
Integration depends on
ddperidson depends on
.1 a1
depends on
Mok and) > Core Container
instrumentation
v v
depends on

depends on
Web

images/00004.jpeg
<<WebController>> <<Service>> | | <<DAO>>
FixedDepositController FixedDepositService FixedDepositDao

Form submitted
» createFixedDeposit

(FixedDepositDetails) Save fixed
deposit details

images/00003.jpeg

images/00006.jpeg
<bean id="controller"
class="sample.s|

g.chapterO1 bankapp.FixedDepositController'>
ixedDepositService" ref="service" />

v

le.spring.chapterO1 bankapp. FixedDepositService>
ixedDepositDac" ref="dac" />

<property name:
</bear>

public class FixedDepositController {
private FixedDepositService fixedDepositService:

» public void setFixedDepositService(FixedDepositService
fixedDepositService) {
logger.info(" Setting fixedDepositService property’
this.fixedDepositService = fixedDepositService:

images/00005.jpeg
bean id="controller" class="sample.spring.chapter01.bankapp.FixedDepositController">
="service" />

v
v ref attribute specifies reference to another bean in the
configuration metadata. The referenced bean is passed
to the JavaBean-style setter method corresponding to
the name attribute

<property> element
specifies a dependency

v
name attribute refers to a JavaBean-style setter method
of the bean. The setter method accepts an argument
whose type is same as the bean referenced by the ref
attribute

images/00008.jpeg
ABean

<<interface>>
BBean

7

j BBeanlmpl

images/00007.jpeg
Spring -
‘container Configuration metadata

1
L

'
read

|
—_—
'

validate

]
create

> FixedDepositController

create

create

FixedDepositService

setFixedDepositDao(FixedDepositDao)

setFixedDepositService(FixedDepositSerlice)
e

FixedDepositDao

images/00009.jpeg
FixedDepositService

<<interface>>
FixedDepositDao

~ 1%

FixedDepositjdbcDao

FixedDeposi

ibernateDao

images/00031.jpeg
MyBank App application

6:send email to

. customer
EmailMessageListener X 8:send emailto
| N customer
createFixedDeposit Fixed deposit processor job ¥
> FixedDepositservice
’ 3: Email IMS
: Fixed deposit JMS message FixedDepositMessagelistener
message 2
: Retriev "
e 5: Save fixed 7: Subtract fixed
¢ 4 % despositdetails deposit amount from
ActiveMQ nstance bank account

v ooy
Database

images/00030.jpeg
<sinterface>> L
PlatformTransactionManager
A A 4 HibernateTransactionManager

JpaTransactionManager

JtaTransactionManager

ry

DataSourceTransactionManager

OC4JJtaTransactionManager WebLogicitaTransactionManager WebSphereUowTransactionManager

images/00033.jpeg
manages <<interface>>
ki e >
Cache
2
<<interface>>
CacheManager
. i

EhCacheCache JCacheCache ConcurrentMapCache

EhCacheCacheManager JCacheCacheManager Sl e GEIELEEE W MU ER G UL RS

images/00032.jpeg
MyBank App application
1: findFixedDepositsByBankAccount

> FixedDepositService

v

FixedDepositDao .
3: cache fixed deposit

details

v
2: read fixed deposit
details corresponding
to the bank account v

Database

images/00035.jpeg
<access-modifier-pattern> <method-name-pattern>

v v
public FixedDepositDetails getFixedDeposit(int fixedDepositId) throws Exception
A A A N

<throws-pattern>
<return-type-pattern> <method-param-pattern>

images/00034.jpeg
1: createBankAccount 3: createBankAccount
> Proxy for BankAccountService

2:log v

BankAccountService
SpringBankApp LoggingAspect

4 FixedDepositService
5tlog "

> Proxy for FixedDepositService
4: createFixedDeposit 6: createFixedDeposit

images/00037.jpeg
Indicates that the method is defined
Indicates that the return type in sample.MyService type
of the method doesn’t matter

Indicates that the method

name can be anythin
v $ o4 ything

execution(* sample.MyService.*(..))")
N

@Pointcut(value

Indicates that the method
argument(s) can be anything

images/00036.jpeg
Indicates that the return type

of the method doesn’t matter Indicates that the method name

must begin with ‘createFixed”
vy v
@pointcut(value = "execution(* createFixed*(..))")
N
Indicates that the method
argument(s) can be anything

images/00028.jpeg
BANK_ACCOUNT_DETAILS

ACCOUNT_ID (PK)
BALANCE_AMOUNT
LAST_TRANSACTION_TS

FIXED_DEPOSIT_DETAILS

FIXED_DEPOSIT_ID (PK)
ACCOUNT_ID (FK)
FD_CREATION_DATE
AMOUNT

TENURE

ACTIVE

images/00027.jpeg
ApplicationConfigurer MutablePropertyValues PropertyValue RuntimeBeanReference Bean factory.
i I |
hasPrototypeDependency

| Get bean properties

| i
| I |
| 1 |
| I
| !

i
[for each bean property] get property value

|
|
i
| !
! Ifthe bean property refers toa
|

bean, the property value s of type

i
|

T T d RuntimeBeanReference
' [if property value instance of RuntimeBeanReference]

) get bean name [

T T T d

| beanName i | |

h !
| Getbean definition for beanName '

| beanDefinition

Return true if beanDefinition
represents a prototype-scoped bean
1

images/00029.jpeg
FixedDepositServicelmpl FixedDepositDaolmpl BankAccountDaolmpl Database

| | |

i i |

createfixedDeposit | i !
————— = o

| createFixedDeposit | i

[—————— savefixed deposit detailsin

| FIXED_DEPOSIT_DETAILS table

subtractFromAccount

i
| Checkif balance amount is
| >=fixed deposit amount

|

|
[if balance amount is < fixed deposit
amount] throw exception

| Subtract fixed deposit amount from
| BANK_ACCOUNT_DETAILS table

—

g

images/00020.jpeg
<property name="names">
<list>
<valueslist element 1</value>
<valueslist element 2</value>
<[list>
<[property>

1

l

ArrayList

public void setNames(Vector names) {
this.names = names;

Vector

I CustomCollectionEditor

images/00022.jpeg
<<interface>>
EventSender

FixedDepositServicelmpl

+sendEvent() : void.

£ Vi

MessagingEventSender WebServiceEventSender

DatabaseEventSender

images/00021.jpeg
<property name="mapType">
<map>
<entry>
<key>
<value>map key</value>
<key>
<value>map value</value>
<lentry>

</map>
<lproperty>
|
1
LinkedHashMap

public void setMapType(SortedMap mapType) {
this.mapType = mapType;
}

A

4

TreeMap
A

3

L CustomMapEditor

images/00024.jpeg
<prototype> <singleton> <singleton>

Spring Container ,,¢5merRequestDetails customerRequestDao customerRequestService

create

Get|

images/00023.jpeg
EventSenderSelectorServicelmpl ——1: write property—»-
Properties file

(appConfig.properties)

FixedDepositservicelmpl 2: read property

images/00026.jpeg
Spring container Application Context XML
! 1
create ! !
| read !
| I]
I create |
MyBeanPostProcessor

set properties |

i
h
- !
init i
create]

i

postProcessBeforelnitialization
= !
init i

|
|
|
1
— ABean
i
|
|
|

postProcessAfterinitialization !

images/00025.jpeg
<singleton>

Spring Container (4o mereg

create

create

Get
customerRegistrationService

create

<prototype>
customerRegis..Details

<prototype>
customerRegis. Service

anew customerRegistrationService
instance is returned

images/00017.jpeg
daoTemplate

<property name="databaseOperations" ==~~~
ref="databaseOperations" />

Spring container

inherit ’

/
create /
/

/
/
¥

P
fixedDepositDao personalBankingDao

<property name="databaseOperations" | | <property name="databaseOperations"
ref="databaseOperations" /> ref="databaseOperations" />

images/00016.jpeg
FixedDepositService

FixedDepositDao

FixedDepositController

PersonalBankingController

_____ PersonalBankingService

PersonalBankingDao

images/00019.jpeg
<property name:
<set>
<value>set element 1</value>
<value>set element 2</value>
<lset>
<lproperty>

listType">

1

|

LinkedHashSet

public void setListType(List listType) {
thislistType = Ii
}

A
4

Arraylist
A

3

_— CustomCollectionEditor

images/00018.jpeg
serviceTemplate

ServiceTemplate

<property name="JmsMessageSender” re
<property name="emailMessageSender" ref

<property name="webServicelnvoker" ref="webServicelnvoker" />

msMessageSender” />
mailMessageSender” />

e %
inherit create /|

inherit

Spring container

PersonalBankingServicelmpl

. create

»

FixedDepositServicelmp!

\create

Y

fixedDepositService

personalBankingService

<property name="jmsMessageSender"
ref="jmsMessageSender" />

more properties inherited from the
parent bean definition

<property name="fixedDepositDao"
ref="fixedDepositDac" />

<property name="jmsMessageSender"
ref="jmsMessageSender" />

..more properties inherited from the
parent bean definition

<property name="personalBankingDao"
ref="personalBankingDao" />

images/00051.jpeg
Path to which
DispatcherServlet is mapped

l

http://localhost:8080/ch10-helloworld /helloworld /sayhello

context path SimpleUriHandlerMapping
maps /sayhello path to
HelloWorldController controller

images/00050.jpeg
Spring Web MVC

request

SimpleUriHandlerMapping -3—> HelloWorldController
A

A

——1——>

handleRequest
DispatcherServiet 4

5.

InternalResourceViewResolver

6 » helloworld.jsp

images/00053.jpeg
request path to which the @RequestMapping annotation
DispatcherServlet is mapped on sayHello method is mapped to

\ this request path
| | l

http://localhost:8080/ch10-annotation-helloworld /helloworld /saySomething /sayhello

context path request path to which the class-level
@RequestMapping in
HelloWorldController is mapped

images/00052.jpeg
WebApplicationContext read—» root-serviet.xmi

|
~read-» servleti-serviet.xml

>

serviet! > WebApplicationContext 7|
i1
1

Dispatcher — rread-> serviet2-serviet.xml
it > serviet2 , WebApplicationContext :
1
i1

A serviet3 WebApplicationContext -Tread->serviet3-serviet.xml
|

p
I
|
|
I
I
I
I
[
L
I
I
i
I
I
I
I
|
I
I
|

images/00055.jpeg
Open fixed deposit

Amount (in USD): 100 must be greater than or equalto 1000

Tenure (in months): [must be greater than or equal to 12
Email: EE not a well-formed email address

Save | GoBack

images/00054.jpeg
1D | Depositamount | Tenure Email Action

1 | 10000 24 atemail@somedomain.com | Close Edit
2 | 20000 3% azemail@somedomain.com | Close Edit
3 | 30000 3% a3email@somedomain.com | Close Edit
4 | 50000 % ademail@somedomain.com | Close Edit
5 | 15000 £ aSemail@somedomain.com | Close Edit

Create new Fixed Deposi

images/00057.jpeg
Open fixed deposit

Amount (in USD):

Maturity date:

Email:

Save

1200
forzrz2013
[mail@somedomain com

images/00056.jpeg
RequestMappingHandlerAdapter FixedDepositController Model

request
5l
gethewrlxedDapositDetalls | The fixedDepositDetails object is
o b stored with name
fixedDeposHnetalls newFixedDepositDetails
Store fixedDepositDetails
N

Get object named newFixedDepositDetails
>

newFixedDepositDetails

openFixedDeposit(newFixedDepositDetails)
>

images/00059.jpeg
RequestMappingHandierAdapter @nitBinder
1: create
> WebDataBinder
2: initialize
»
3 initialize
»
4:initialize
>
v
‘The default configuration for § ¥
WebDataBinder is provided by s o WebDataBinder is further
RequestMappingHandlerAdapter ~ WebDataBinder is further initialized initialized by @InitBinder

by the WebBindinglnitializer method

images/00058.jpeg
WebDataBinder MyObject PropertyEditor for N

request{x=a,y=b} | No conversion required because

R setx(a) > setX method accepts an argument
> of type String.
Get PropertyEditor for
Request parametersiars converting String b to type N
of type String
convert String b to type N
>
b_
<
setY(b_)

v

Type conversion required because
setY method accepls an argument
of type N.

images/00049.jpeg
_— Spring Web MVC Locates the controller

s based on the URL path
SimpleUriHandlerMapping 2— HelloWorldController
ModelAndVi
InternalResourceViewResolver [l s

Resolves actual view|
based on view name

4 > helloworld.jsp

images/00040.jpeg
Indicates that the return type Indicates that the method is defined
of the method doesn’t matter insample.MyService type

Indicates that the method
name can be anything

v v oy
@Pointcut(value = "execution(* sample.MyService.*(..)) 8&& args(xyz)")
a x
Indicates that the method

argument(s) can be anything
Indicates that the method accepts a single argument. The type of
the argument is specified by the method on which this @Pointcut
annotation s specified. In this case the type of xyz argument is
v SomeObject

private void pointcutSignatureMethod(SomeObject xyz)

images/00042.jpeg
Advice is applied to methods of beans
whose name or id begins with someBean

v
@Pointcut(value = "bean(someBean*)"

images/00041.jpeg
Name or id of the bean whose
methods are target of the
advice

v
ean(someBean)")

@Pointcut (value

images/00044.jpeg
Advice is applied to methods that are
contained in an object annotated with
Spring’s @Component annotation

v
@target (org.springframework. stereotype.Component)")

@Pointcut(value

images/00043.jpeg
Advice is applied to methods that are
annotated with Spring’s @Cacheable
annotation

v
@Pointcut(value = "@annotation(org.springframework.cache.annotation.Cacheable)")

images/00046.jpeg
public void afterThrowingAdvice(JoinPoint joinPoint, Throwable exception) {
logger.info("Exception thrown by " + joinPoint.getSignature().getName()
+" Exception type is : " + exception);

vy

<aop:after-throwing method="afterThrowingAdvice" throwing="exception"
pointcut="execution(* sample.spring..FixedDepositService.*(..))" [>

images/00045.jpeg
public void afterReturningAdvice(JoinPoint joinPoint, int aValue) {
logger.info("Value returned by " + joinPoint.getSignature().getName()
+" method is " + aValue);

vy

<aop:after-returning method="afterReturningAdvice" returning="aValue"
pointcut="execution(*sample.spring..BankAccountService.createBankAccount(..))" />

images/00048.jpeg
handleRequest
request ——————2———> HelloWorldController
1—> Spring Web MVC

« 3
ModelAndView

model data

4 » helloworld jsp \

The JSP page corresponding to the
helloworld view name returned by the
handleRequest method

images/00047.jpeg
src/main/java contains Java
classes, like controllers, domain
objects, services, DAOs and other
application objects

src/main/resources/META-INFispring
contains the application context XML file
that defines services and DAOs used by
the web application

src/main/webapp/WEB-INF/jsp contains
JSP files that form part of the web
application

g src/main/webapp/WEB-INF/spring
B test contains application context XML files that

sreltestljava contains Java classes for
testing the application, and srcitest/
resources contains resources used for
testing the application.

defines controllers, handler mappings, and
50 on. The application context file in this
folder is referred to as web application
context XML file.

images/00039.jpeg
Indicates that the return type Indicates that the method is d
of the method doesn’t matter in sample.MyService type

Indicates that the method

name can be anythin;
4 o0 ything

xecution(* sample.MyService.*(..)) & args(mypackage.SomeObject)")
A A

gpointcut(value =

Indicates that the method
argument(s) can be anything

Indicates that the method accepts a single argument whose
runtime type is mypackage.SomeObiject

images/00038.jpeg
Indicates that the method is defined in

Indicates that the return type sample.MySesvice type

of the method doesn’t matter
Indicates that the method
name can be anything
v v v
gPointcut(value = "execution(* sample.MyService.*(..) throws *Exception)")
A A
Indicates that the method

argument(s) can be anything Indicates the exceptions specified in

the throws clause of the method

images/00071.jpeg
Fixed deposit list

Logout

Username: custi

0 10000

2 custi@somedomain.com || Edit

| Create new Fixed Deposit

images/00070.jpeg
Login with Username and Password

User: lcust1
Password: [reese

(@ Remember me on this computer.|
| L

images/00073.jpeg
Logout

Username: custi

Fixed deposit list

custi@somedomain.com

Create new Fixed Deposit

Fixed Deposit ID

images/00072.jpeg
Fixed deposit list

0 cust!

10000

24

Logout;

Username: admin’

custi@somedomain.com | |Close

i cust2

10000

24

cust2@somedomain.com ||Close

images/00075.jpeg
Fixed deposit list

Logout

Username: cust1

D

Depositamount | Tenure

Email

Action

Create new Fixed Deposit |

images/00074.jpeg
Username: cyst1
Password: veuee

Login

images/00077.jpeg
Logout
Username: admin
Fixed deposit list

custi@somedomain.com | Close

Create new Fixed Deposit

images/00076.jpeg
Logout

Username: cust1

Fixed deposit list

images/00079.jpeg
Figure 14-10 ACL_SID table

images/00078.jpeg
£id class
1 sample.spring.chapter14.domain.FixedDepositDetails

images/00060.jpeg
Edit fixed deposit

1d: Rl

Amount(nUSDE [goog

Matriydate: [o5zz013

Email: [p4email@somedomain co
_Sae| GoBack

-» read-only field

images/00062.jpeg
Iresource2
PUT

Iresource1
GET

Iresource1
PUT

Resources exposed by the
REST-style application

REST application

images/00061.jpeg
Name of the model attribute field for Eror code that acts as a message
which the error is being reported key when showing error messages

¥ v

errors.rejectValue("depositAmount”, "error.depositAmount.less”,
“must be greater than or equal to 1000");

v
Default error message if no

message with the specified error
code is found

images/00064.jpeg
GET ffixedDeposits

@ e Mxedbaposisrig=izs

Yy v
o 1] getallfixed deposits
e ‘get details of fixed deposit with id 123
@ PosT ffixedDeposits
@ create new Fixed deposit
- . v
FixedDepositws| ed Deposits
T
o 0o @ modify fixed deposit with id 123
PUT ffixedDeposits7id=123 » (5} delete Tod doposlt wMivil A28
™

DELETE ffixedDeposits?i

23

images/00063.jpeg
JSON

>
HTTP

JSON

FixedDepositWs

images/00066.jpeg
Feste Kaution liste

1 10000 2 atemail@somedomain.com | SchiieRen Bearbeiten
2 20000 k] a2email@somedomain.com | Schiieen Bearbeiten
3 30000 k] a3email@somedomain.com | SchiieGen Bearbeiten
4 50000 % ademail@somedomain.com | SchiieRen Bearbeiten
5 15000 % a5email@somedomain.com | SchiieRen Bearbeiten

Erstellen Sie neue feste Einlage

Language: Engiish(US) | German | English(Canadal

images/00065.jpeg
Web service client

1: getFixedDepositList
> FixedDepositWSClient

2: exchange
v
RestTemplate
N

Convert JSON response from
web service to
List<FixedDepositDetails> type

v
MappingJackson2HttpMessageConverter

FixedDepositWS web
service

3: getFixedDepositList

> FixedDepositController
5: response A
4: Convert
List<FixedDepositDetails> type
returned by getFixedDepositList

to JSON response
v

MappingJackson2HttpMessageConverter

images/00068.jpeg
W

N

FixedDepositController Queve <<ResultContext>> FixedDepositService <<DeferredResult>>
. resutConext . deteredRest
| " | !

1 ! I !
| I
! I ! I
ol o Fesscmwmspeosnoiem) | ; i
[ronesponds o I
| getResutConted | commascgia } !
wosuConted [rovodciResicanon | H
| l |
1 I
| gt mthog name of FoefDepos | |
1 Comesponds to getArgs. |
methog of i
getmethod arguments | :
]
| |
| | !
[imioke methodhlams metfod and pass methodrasko t |
| T rosut)
m—— |
geDsterreaResur | ! | e resulls sentto
T _ deredmost } tedal
" | T | 1
soosiros) | L i . Lo
| ! | R
I ! |
temove ResurConort | | ! I
I H |
1 | I
I ! L !
4 3

images/00067.jpeg
Client FixedDepositControler

DeferredResult

ResultContext

T T
| geFixedbepositist |

Corresponds to setAras
method of ResutContext =

create 5

corresponds to
setDeferredResut
method of ResutContext

|
create {| i |
% ‘—Pu
setDeferredResut 1

set method name of FixedTepositService

DeferredResut
o4

comresponds to
setMethodTolnvoke

Imethod of ResultContext

images/00069.jpeg
Fixed Deposit list

1 10000 USD 24 atemail@somedomain.com
2 20000 USD 36 a2email@somedomain.com
3 || 30000usD % a3email@somedomain com
4 50000 USD 36 ademail@somedomain.com
5 15000 USD 36 a5email@somedomain.com
Create new Fixed Deposit
Language: English(US) | German

Locale: en US

images/00080.jpeg
&

|dl principal
1true
2true
3true

sid
cust1

cust2
admin

images/00082.jpeg
Refers to id column of Referstoid column of Specifies the
ACL_OBJECT_IDENTITY ACL_SID table permission (read, write,

table and so on) assigned to
/ the user

2id acl_object_identity ace_order sid mask granting audit_success audit_failure

768 12 0o 1 1true false false
769 12 1 1 2true false false
770 12 203 1true false false
771 12 3 3] 16true false false
772 12 4 3 8true false false

images/00081.jpeg
Refers to id column of Refers to id column of
Refers to id column of FIXED_DEPOSIT_DETAILS ACL_SID table

/ACL_CLASS table / table

_class object_id_identity parent_object owner_sid entries_inheriting
1 14 (null) 1true

images/00084.jpeg
&£ username password enabled
admin admin true
custl custl true
cust2 cust2 true

images/00083.jpeg
ACL_CLASS |

-id
- class

AcL_SID

-id
- principal
-sid

ACL_OBJECT_IDENTITY]

-id

- object_id_class

- object_id_identity
- parent_object

- owner_sid

- entries_inheriting

7

ACL_ENTRY

-id

- acl_object_idenity
- ace_order

-sid

- mask

- granting

- audit_success

- audit_failure

FIXED_DEPOSIT_DETAILY

images/00086.jpeg
Define a New Server
Choose the type of server to reate

Dosrioad addtiona server adapters
Select the gerve type:
Jtvpe fiter text
EEr=a =

B Tomcatva.2server
B Tomcatva.oserver
H Tomcatva.1server
[Tomcatvs.0 Server
B Tomeatvs.sserver
 Tomcat ve.0 server
5 Tomeatvz.0 Server
© (> Basc
Publshes and runs J2EE and Java EE Web projects and server configuratons to alocal Tomcat.
server,

Server's hostname: [locaiost
Server nane: Toncatv7.0

images/00085.jpeg
username authority
admin ROLE_ADMIN
cust1 ROLE_CUSTOMER
cust2 ROLE_CUSTOMER

images/00088.jpeg
[2. Markers [Properties | 44 Servers 53 & Data Source Explorer) Snippets.

&

images/00087.jpeg
Tomcat Server
Spedfy the installation directory

Name:
[Apache Tomcat v7.0
Tomcat installation directory:

[c:\apache-tomcat-7.0.35 Browse...
apache-tomcat-7.0.12 Download and Instal...
RE:

[ik1.6.0_23 | Installed REs...

